论文标题
与多项式代数相关的hecke对称性在3通勤不确定
Hecke symmetries associated with the polynomial algebra in 3 commuting indeterminates
论文作者
论文摘要
论文中表明,每个Hecke对称R具有由3个通勤元件自由生成的R-对称代数,由双向运动和对称双线性在3维矢量空间上确定。给出了此类Hecke对称性的一般公式,并描述了等效类别。
It is shown in the paper that each Hecke symmetry R with the R-symmetric algebra freely generated by 3 commuting elements is determined by a bivector and a symmetric bilinear form on a 3-dimensional vector space. A general formula for such Hecke symmetries is given and the equivalence classes are described.