论文标题

基于图形注意机制和最大共同信息的科学文献学习无监督的语义表示学习

Unsupervised Semantic Representation Learning of Scientific Literature Based on Graph Attention Mechanism and Maximum Mutual Information

论文作者

Gao, Hongrui, Li, Yawen, Liang, Meiyu, Guan, Zeli

论文摘要

由于大多数科学文献数据都没有标记,因此这使得基于图的语义表示学习至关重要。因此,提出了基于图形注意机制和最大互信息(GAMMI)的科学文献的无监督语义表示方法。通过引入图形注意机制,附近节点特征的加权求和使相邻节点特征的权重完全取决于节点特征。根据附近节点的特征,可以将不同的权重应用于图中的每个节点。因此,顶点特征之间的相关性可以更好地集成到模型中。此外,提出了一个无监督的对比度学习策略,以解决在大规模图上不标记和可扩展的问题。通过比较潜在空间和全局图表示的正面和负局部节点表示之间的共同信息,图神经网络可以捕获本地和全局信息。实验结果表明,各种节点分类基准的竞争性能,取得了良好的结果,有时甚至超过了监督学习的表现。

Since most scientific literature data are unlabeled, this makes unsupervised graph-based semantic representation learning crucial. Therefore, an unsupervised semantic representation learning method of scientific literature based on graph attention mechanism and maximum mutual information (GAMMI) is proposed. By introducing a graph attention mechanism, the weighted summation of nearby node features make the weights of adjacent node features entirely depend on the node features. Depending on the features of the nearby nodes, different weights can be applied to each node in the graph. Therefore, the correlations between vertex features can be better integrated into the model. In addition, an unsupervised graph contrastive learning strategy is proposed to solve the problem of being unlabeled and scalable on large-scale graphs. By comparing the mutual information between the positive and negative local node representations on the latent space and the global graph representation, the graph neural network can capture both local and global information. Experimental results demonstrate competitive performance on various node classification benchmarks, achieving good results and sometimes even surpassing the performance of supervised learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源