论文标题
关于金茨堡 - 陆方方程的分叉理论
On the bifurcation theory of the Ginzburg-Landau equations
论文作者
论文摘要
我们在封闭的任意维度的封闭歧管上使用琐碎的第一个真实的共同体来构建针对金茨堡 - 兰道方程的非最小和不可约的解决方案。我们的方法使用分叉理论,其中“分叉点”以拉普拉斯型操作员的特征值为特征。据我们所知,这些是非平凡线束的第一个此类示例。
We construct nonminimal and irreducible solutions to the Ginzburg-Landau equations on closed manifolds of arbitrary dimension with trivial first real cohomology. Our method uses bifurcation theory where the "bifurcation points" are characterized by the eigenvalues of a Laplace-type operator. To our knowledge these are the first such examples on nontrivial line bundles.