论文标题

具有精确准对称的嵌套磁表面的直接恒星线圈优化

Direct stellarator coil optimization for nested magnetic surfaces with precise quasi-symmetry

论文作者

Giuliani, Andrew, Wechsung, Florian, Cerfon, Antoine, Landreman, Matt, Stadler, Georg

论文摘要

我们提出了一种可强大的优化算法,用于设计具有嵌套通量表面和精确准对称的真空磁场的电磁线圈。该方法基于双重优化问题,其中外圈优化受到一组内部最小二乘优化问题的限制,其解决方案描述了磁性表面。外部优化目标目标线圈产生具有嵌套磁表面和良好准对称性的场。内部优化问题在存在时识别磁表面,并且在存在磁岛或混乱的情况下近似表面。我们表明,该公式可用于治愈岛屿和混乱,从而产生线圈,从而产生具有精确的准对称性的磁场。我们表明,该方法可以使用传统两个阶段线圈设计过程的线圈以及近轴扩展优化的线圈进行初始化。我们提出了一个数字示例,其中岛链被治愈并优化到具有纵横比6的表面上。另一个数值示例表明,具有优化的准晶体对称性的嵌套透明表面的纵横比可以从6降低到大约4个。最后一个示例表明,我们的方法是强大的,并且使用Coils ackiis spection spectiation and-spection spectiation coil verniis spection spectiation coption spectiation。

We present a robust optimization algorithm for the design of electromagnetic coils that generate vacuum magnetic fields with nested flux surfaces and precise quasi-symmetry. The method is based on a bilevel optimization problem, where the outer coil optimization is constrained by a set of inner least-squares optimization problems whose solutions describe magnetic surfaces. The outer optimization objective targets coils that generate a field with nested magnetic surfaces and good quasi-symmetry. The inner optimization problems identify magnetic surfaces when they exist, and approximate surfaces in the presence of magnetic islands or chaos. We show that this formulation can be used to heal islands and chaos, thus producing coils that result in magnetic fields with precise quasi-symmetry. We show that the method can be initialized with coils from the traditional two stage coil design process, as well as coils from a near axis expansion optimization. We present a numerical example where island chains are healed and quasi-symmetry is optimized up to surfaces with aspect ratio 6. Another numerical example illustrates that the aspect ratio of nested flux surfaces with optimized quasi-symmetry can be decreased from 6 to approximately 4. The last example shows that our approach is robust and a cold-start using coils from a near-axis expansion optimization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源