论文标题
神经体积网状发电机
Neural Volumetric Mesh Generator
论文作者
论文摘要
深层生成模型在生成具有不同表示的3D形状方面已成功。在这项工作中,我们提出了可以产生新颖和高质量的体积网格的神经体积网状发电机(NVMG)。与先前用于点云,体素和隐式表面的3D生成模型不同,体积网状表示是行业中的现成用途表示,均具有有关表面和内部的细节。生成这种高度结构化的数据,因此带来了重大挑战。我们首先提出了一个基于扩散的生成模型,通过生成具有接近现实的大纲和结构的体素化形状来解决此问题。我们可以简单地获取四面体网格作为具有素形状的模板。此外,我们使用体素 - 条件神经网络来预测体素上的平滑隐式表面,并逐渐将四面体网格投射到正规化下的预测表面。正则化术语经过精心设计,因此可以(1)摆脱诸如翻转和高扭曲之类的缺陷; (2)在变形过程中,在高质量最终网格的变形过程中迫使内部和表面结构的规律性。如实验中所示,我们的管道可以从随机噪声或参考图像中产生高质量的无伪影的体积和表面网格,而无需任何后处理。与最先进的体素到网格变形方法相比,我们在将生成的体素作为输入时显示出更大的鲁棒性和更好的性能。
Deep generative models have shown success in generating 3D shapes with different representations. In this work, we propose Neural Volumetric Mesh Generator(NVMG) which can generate novel and high-quality volumetric meshes. Unlike the previous 3D generative model for point cloud, voxel, and implicit surface, the volumetric mesh representation is a ready-to-use representation in industry with details on both the surface and interior. Generating this such highly-structured data thus brings a significant challenge. We first propose a diffusion-based generative model to tackle this problem by generating voxelized shapes with close-to-reality outlines and structures. We can simply obtain a tetrahedral mesh as a template with the voxelized shape. Further, we use a voxel-conditional neural network to predict the smooth implicit surface conditioned on the voxels, and progressively project the tetrahedral mesh to the predicted surface under regularizations. The regularization terms are carefully designed so that they can (1) get rid of the defects like flipping and high distortion; (2) force the regularity of the interior and surface structure during the deformation procedure for a high-quality final mesh. As shown in the experiments, our pipeline can generate high-quality artifact-free volumetric and surface meshes from random noise or a reference image without any post-processing. Compared with the state-of-the-art voxel-to-mesh deformation method, we show more robustness and better performance when taking generated voxels as input.