论文标题

通过共享特征和分配合奏来了解潜在流形的神经编码

Understanding Neural Coding on Latent Manifolds by Sharing Features and Dividing Ensembles

论文作者

Bjerke, Martin, Schott, Lukas, Jensen, Kristopher T., Battistin, Claudia, Klindt, David A., Dunn, Benjamin A.

论文摘要

系统神经科学依赖于神经数据的两种互补观点,其特征在于单个神经元调整曲线和人群活动的分析。这两种观点在神经潜在变量模型中优雅地结合在一起,这些模型限制了潜在变量与神经活动之间的关系,并通过简单的调整曲线函数建模。最近,使用高斯工艺证明了这一点,并应用了现实和拓扑相关的潜在流形。然而,这些模型错过了神经种群的关键共享编码特性。我们建议在神经调整曲线上共享功能共享,从而显着提高性能并有助于优化。我们还提出了整体检测问题的解决方案,其中不同的神经元(即合奏)可以通过不同的潜在歧管调节。通过在训练过程中通过软神经元的软聚类来实现,这允许以无监督的方式分离混合神经种群。这些创新导致了更容易解释的神经种群活动模型,这些模型甚至在复杂的潜在流形的混合物上,训练和表现更好。最后,我们将方法应用于最近发布的网格单元数据集,并恢复不同的合奏,推断环形潜伏期并在单个集成建模框架中预测神经调节曲线。

Systems neuroscience relies on two complementary views of neural data, characterized by single neuron tuning curves and analysis of population activity. These two perspectives combine elegantly in neural latent variable models that constrain the relationship between latent variables and neural activity, modeled by simple tuning curve functions. This has recently been demonstrated using Gaussian processes, with applications to realistic and topologically relevant latent manifolds. Those and previous models, however, missed crucial shared coding properties of neural populations. We propose feature sharing across neural tuning curves which significantly improves performance and helps optimization. We also propose a solution to the ensemble detection problem, where different groups of neurons, i.e., ensembles, can be modulated by different latent manifolds. Achieved through a soft clustering of neurons during training, this allows for the separation of mixed neural populations in an unsupervised manner. These innovations lead to more interpretable models of neural population activity that train well and perform better even on mixtures of complex latent manifolds. Finally, we apply our method on a recently published grid cell dataset, and recover distinct ensembles, infer toroidal latents and predict neural tuning curves in a single integrated modeling framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源