论文标题
等离子纳米结构上的荧光纳米座的光学电气诱捕
Opto-thermoelectric trapping of Fluorescent Nanodiamonds on Plasmonic Nanostructures
论文作者
论文摘要
流体中荧光纳米座(FND)的确定性光学操纵已成为多模式生物学成像中的实验挑战。设计和开发纳米光学诱捕策略以实现此目的是一项重要任务。在这封信中,我们显示了化学准备的金纳米颗粒和银纳米线如何使用长的工作距离,低功率密度照明(532 nm激光器,12 $μw/μmmm^2 $)。我们的捕获构型结合了由单个等离激子纳米颗粒产生的热质磁场和表面活性剂促进的光疗电视效应,以实现纳米光陷阱,从而将纳米光陷阱降低到近视的单个FND 120 nm。我们利用相同的捕获激发源来捕获单个FND的光谱特征并跟踪其位置。通过跟踪FND,我们观察到不同等离子结构周围FND动力学的差异。我们设想,可以推断我们的掉落平台以执行针对性,低功率捕获,操纵和对生物系统(例如细胞)内FND的多模式成像。
Deterministic optical manipulation of fluorescent nanodiamonds (FNDs) in fluids has emerged as an experimental challenge in multimodal biological imaging. Designing and developing nano-optical trapping strategies to serve this purpose is an important task. In this letter, we show how chemically-prepared gold nanoparticles and silver nanowires can facilitate Opto-thermoelectric force to trap individual entities of FNDs using a long working distance lens, low power-density illumination (532 nm laser, 12 $μW/μm^2$). Our trapping configuration combines the thermoplasmonic fields generated by individual plasmonic nanoparticles and the opto-thermoelectric effect facilitated by the surfactant to realise a nano-optical trap down to a single FND 120 nm in diameter. We utilise the same trapping excitation source to capture the spectral signatures of single FNDs and track their position. By tracking the FND, we observe the differences in the dynamics of FND around different plasmonic structures. We envisage that our drop-casting platform can be extrapolated to perform targeted, low-power trapping, manipulation, and multimodal imaging of FNDs inside biological systems such as cells.