论文标题

由巨大的恒星簇中的直接和后处理辐射压力驱动的流出

Outflows Driven by Direct and Reprocessed Radiation Pressure in Massive Star Clusters

论文作者

Menon, Shyam H., Federrath, Christoph, Krumholz, Mark R.

论文摘要

我们使用三维辐射流体动力学(RHD)模拟来研究直接紫外线(UV)(UV)和粉尘加工红外线(IR)辐射压力的综合作用下的巨大恒星簇的形成。 We explore a broad range of mass surface density $Σ\sim 10^2$-$10^5 \, \mathrm{M}_{\odot} \, \mathrm{pc}^{-2}$, spanning values typical of weakly star-forming galaxies to extreme systems such as clouds forming super-star clusters, where radiation pressure is expected to be the dominant feedback mechanism.我们发现,恒星形成只能通过$σ\ Lessim 10^3 \,\ Mathrm {m} _ {\ odot} \,\ Mathrm {pc}^{ - 2} $调节,但是counds具有$ 10^5 \,\ mathrm mathrm}一旦达到了高星形的效率($ \ sim 80 \%$),\ Mathrm {pc}^{ - 2} $就会成为超级埃德丁顿,因此在稳定的流出中启动剩余的气体。这些流出达到了$ \ sim 15 $ - $ 30 \,\ mathrm {km} \,\ Mathrm {s}^{ - 1} $的大规模加权径向速度,这是$ \ sim 0.5 $ - $ 2.0 $ 2.0 $ 2.0 $ $ 2.0 $倍。这表明辐射压力是解释最近观察到的分子流出的强大候选者,该分子流出在附近的星空星系中的年轻超级明星簇中发现。我们量化了不同方案中紫外线和红外辐射压力的相对重要性,并推断出对$σ\ sim 10^3 \,\ mathrm {m} _ {\ odot} \,\ m mathrm {pc}^{ - 2} $,而较高(较低)的dirands commounts Ir(Ir(Ir)越来越多地,这两者同样重要。与没有紫外线或IR频带的控制运行的对照运行的比较表明,流出主要是由紫外线分量提供的脉冲驱动的,而IR辐射的效果是使较大的气体超级埃德丁顿的效果增加,从而将流出质量量增加到$ \ sim 2 $。

We use three-dimensional radiation hydrodynamic (RHD) simulations to study the formation of massive star clusters under the combined effects of direct ultraviolet (UV) and dust-reprocessed infrared (IR) radiation pressure. We explore a broad range of mass surface density $Σ\sim 10^2$-$10^5 \, \mathrm{M}_{\odot} \, \mathrm{pc}^{-2}$, spanning values typical of weakly star-forming galaxies to extreme systems such as clouds forming super-star clusters, where radiation pressure is expected to be the dominant feedback mechanism. We find that star formation can only be regulated by radiation pressure for $Σ\lesssim 10^3 \, \mathrm{M}_{\odot} \, \mathrm{pc}^{-2}$, but that clouds with $Σ\lesssim 10^5 \, \mathrm{M}_{\odot} \, \mathrm{pc}^{-2}$ become super-Eddington once high star formation efficiencies ($\sim 80 \%$) are reached, and therefore launch the remaining gas in a steady outflow. These outflows achieve mass-weighted radial velocities of $\sim 15$ - $30 \,\mathrm{km} \, \mathrm{s}^{-1}$, which is $\sim 0.5$ - $2.0$ times the cloud escape speed. This suggests that radiation pressure is a strong candidate to explain recently observed molecular outflows found in young super-star clusters in nearby starburst galaxies. We quantify the relative importance of UV and IR radiation pressure in different regimes, and deduce that both are equally important for $Σ\sim 10^3 \, \mathrm{M}_{\odot} \, \mathrm{pc}^{-2}$, whereas clouds with higher (lower) density are increasingly dominated by the IR (UV) component. Comparison with control runs without either the UV or IR bands suggests that the outflows are primarily driven by the impulse provided by the UV component, while IR radiation has the effect of rendering a larger fraction of gas super-Eddington, and thereby increasing the outflow mass flux by a factor of $\sim 2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源