论文标题
从第一原理中的4H-SIC中的声子限制的载体和大厅因素
Phonon-limited carrier mobilities and Hall factors in 4H-SiC from first principles
论文作者
论文摘要
电荷载体迁移率是半导体材料和设备优化的核心,而HALL测量是其表征的最重要技术之一。霍尔因子定义为霍尔和漂移迁移之间的比率,尤其重要。在这里,我们通过计算技术上重要的宽频段半导体(4h-silicon碳化物(4H-SIC))的漂移和霍尔迁移量来研究各向异性的效果。使用$ GW $电子结构和\ textIt {ab litio}电子 - phonon相互作用,我们在不拟合参数的情况下求解了Boltzmann传输方程。计算出的电子和孔迁移率与实验数据一致。电子大厅因子很大程度上取决于外部磁场$ \ mathbf {b} $的方向,并且孔霍尔因子对$ \ mathbf {b} \ parallel c $和$ \ mathbf {b} \ perp c $的温度依赖性不同。我们通过各向异性和非促糖带结构以及能量依赖性的电子散射引起的不同等方面的表面形状来解释这一点。
Charge carrier mobility is at the core of semiconductor materials and devices optimization, and Hall measurement is one of the most important techniques for its characterization. The Hall factor, defined as the ratio between Hall and drift mobilities, is of particular importance. Here we study the effect of anisotropy by computing the drift and Hall mobility tensors of a technologically important wide-band-gap semiconductor, 4H-silicon carbide (4H-SiC) from first principles. With $GW$ electronic structure and \textit{ab initio} electron-phonon interactions, we solve the Boltzmann transport equation without fitting parameters. The calculated electron and hole mobilities agree with experimental data. The electron Hall factor strongly depends on the direction of external magnetic field $\mathbf{B}$, and the hole Hall factor exhibits different temperature dependency for $\mathbf{B}\parallel c$ and $\mathbf{B}\perp c$. We explain this by the different equienergy surface shape arising from the anisotropic and non-parabolic band structure, together with the energy-dependent electron-phonon scattering.