论文标题
纤维产品的NEF锥,并应用于锥体猜想
Nef cones of fiber products and an application to the Cone Conjecture
论文作者
论文摘要
我们证明了平滑纤维产物的NEF锥体的分解定理,但符合其Néron-Severi Space分解的必要条件。我们将其应用于描述所谓的Schoen品种的Nef锥,该锥形是Schoen构建的Calabi-Yau三倍的较高维度类似物。 Schoen品种产生了Calabi-Yau对,并且在每个维度至少三个方面,存在具有非多层NEF锥体的Schoen品种。我们证明了Kawamata-Morrison- totaro圆锥体为Schoen品种的Nef锥体构想,该锥体通过Grassi和Morrison概括了这项工作。
We prove a decomposition theorem for the nef cone of smooth fiber products over curves, subject to the necessary condition that their Néron--Severi space decomposes. We apply it to describe the nef cone of so-called Schoen varieties, which are the higher dimensional analogues of the Calabi--Yau threefolds constructed by Schoen. Schoen varieties give rise to Calabi--Yau pairs, and in each dimension at least three, there exist Schoen varieties with non-polyhedral nef cone. We prove the Kawamata--Morrison--Totaro Cone Conjecture for the nef cones of Schoen varieties, which generalizes the work by Grassi and Morrison.