论文标题

变分量子一级分类器

Variational quantum one-class classifier

论文作者

Park, Gunhee, Huh, Joonsuk, Park, Daniel K.

论文摘要

一级分类是具有广泛应用的模式识别中的一个基本问题。这项工作为此类问题提供了半监督的量子机学习算法,我们称之为变异量子一级分类器(VQOCC)。该算法适用于嘈杂的中间量子量子计算,因为VQOCC使用正常数据集训练完全参数化的量子自动编码器,并且不需要解码。将VQOCC的性能与使用手写的数字和时尚数字数据集进行了将VQOCC的性能与单级支持向量机(OC-SVM),内核主组件分析(PCA)和深卷积自动编码器(DCAE)的性能进行比较。数值实验通过改变数据编码,参数化的量子电路层和潜在特征空间的大小来检查VQOCC的各种结构。基准表明,尽管模型参数的数量仅随数据大小而对数增长,但VQOCC的分类性能与OC-SVM和PCA的分类性能相当。在大多数情况下,在类似的训练条件下,量子算法在大多数情况下都优于DCAE。因此,我们的算法构成了一个非常紧凑且有效的机器学习模型,用于一级分类。

One-class classification is a fundamental problem in pattern recognition with a wide range of applications. This work presents a semi-supervised quantum machine learning algorithm for such a problem, which we call a variational quantum one-class classifier (VQOCC). The algorithm is suitable for noisy intermediate-scale quantum computing because the VQOCC trains a fully-parameterized quantum autoencoder with a normal dataset and does not require decoding. The performance of the VQOCC is compared with that of the one-class support vector machine (OC-SVM), the kernel principal component analysis (PCA), and the deep convolutional autoencoder (DCAE) using handwritten digit and Fashion-MNIST datasets. The numerical experiment examined various structures of VQOCC by varying data encoding, the number of parameterized quantum circuit layers, and the size of the latent feature space. The benchmark shows that the classification performance of VQOCC is comparable to that of OC-SVM and PCA, although the number of model parameters grows only logarithmically with the data size. The quantum algorithm outperformed DCAE in most cases under similar training conditions. Therefore, our algorithm constitutes an extremely compact and effective machine learning model for one-class classification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源