论文标题

ForestQB:一个自适应查询构建器支持野生动植物研究

ForestQB: An Adaptive Query Builder to Support Wildlife Research

论文作者

Mussa, Omar, Rana, Omer, Goossens, Benoît, Orozco-terWengel, Pablo, Perera, Charith

论文摘要

本文介绍了SPARQL查询构建器ForestQB,以帮助生物科学和野生动植物研究人员访问链接数据。由于它们不熟悉语义网和数据本体,因此ForestQB旨在使他们能够从使用链接的数据中受益于提取有价值的信息,而无需掌握数据的性质及其基础技术。 ForestQB正在将基于表单的查询构建器与自然语言集成在一起,以简化查询构造以符合用户要求。 https://iotgarage.net/demo/forestqb可用演示

This paper presents ForestQB, a SPARQL query builder, to assist Bioscience and Wildlife Researchers in accessing Linked-Data. As they are unfamiliar with the Semantic Web and the data ontologies, ForestQB aims to empower them to benefit from using Linked-Data to extract valuable information without having to grasp the nature of the data and its underlying technologies. ForestQB is integrating Form-Based Query builders with Natural Language to simplify query construction to match the user requirements. Demo available at https://iotgarage.net/demo/forestQB

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源