论文标题
使用时间对称数值方法的黑洞扰动的保守演变
Conservative Evolution of Black Hole Perturbations with Time-Symmetric Numerical Methods
论文作者
论文摘要
未来十年中,丽莎任务的预定发射引起了人们对引力自力更生问题的关注。尽管有广泛的理论工作,但极端质量刺激性的重力波的长期数值计算仍然具有挑战性。这项工作提出了一类基于Hermite集成的数值进化方案。它们最重要的特征是时间反转对称性和无条件的稳定性,这使这些方法能够在长时间内保留象征结构,能量,动量和其他NOETHE电荷。我们将Noether的定理应用于Schwarzschild时空的倍曲线切片的黑洞扰动理论的主场,以表明存在数值模拟必须保留的进化常数。我们证明了基于2分泰勒膨胀(例如赫米特整合)的时间对称整合方案在数值上保存了这些数量,这与基于1点泰勒膨胀的方案(例如Runge-Kutta)不同。这使得时间对称方案非常适合长期EMRI模拟。
The scheduled launch of the LISA Mission in the next decade has called attention to the gravitational self-force problem. Despite an extensive body of theoretical work, long-time numerical computations of gravitational waves from extreme-mass-ratio-inspirals remain challenging. This work proposes a class of numerical evolution schemes suitable to this problem based on Hermite integration. Their most important feature is time-reversal symmetry and unconditional stability, which enables these methods to preserve symplectic structure, energy, momentum and other Noether charges over long time periods. We apply Noether's theorem to the master fields of black hole perturbation theory on a hyperboloidal slice of Schwarzschild spacetime to show that there exist constants of evolution that numerical simulations must preserve. We demonstrate that time-symmetric integration schemes based on a 2-point Taylor expansion (such as Hermite integration) numerically conserve these quantities, unlike schemes based on a 1-point Taylor expansion (such as Runge-Kutta). This makes time-symmetric schemes ideal for long-time EMRI simulations.