论文标题
在$ x \ rightarrow 1 $限制中,在深度非弹性散射中以旋律功率分解
Factorization at subleading power in deep inelastic scattering in the $x\rightarrow 1$ limit
论文作者
论文摘要
我们检查了临近领导力(NLP)的包容性深度弹性散射的端点区域。使用无明确的软性或分线模式的软共线性有效理论方法,我们讨论了NLP处的横截面的分解,并表明引入的重叠减法程序是为了消除领先的自由度的双重计数,以确保在一个循环的NLP速率取消速率偏差的端点偏差。为了使这种取消在所有重归于的尺度上发生,需要在铅和旋转算子的异常维度之间进行非平凡的关系,这被证明是在一个循环中保持的。
We examine the endpoint region of inclusive deep inelastic scattering at next-to-leading power (NLP). Using a soft-collinear effective theory approach with no explicit soft or collinear modes, we discuss the factorization of the cross section at NLP and show that the overlap subtraction procedure introduced to eliminate double counting of degrees of freedom at leading power ensures that spurious endpoint divergences in the rate cancel at NLP at one loop. For this cancellation to occur at all renormalization scales a nontrivial relation between the anomalous dimensions of the leading and subleading operators is required, which is demonstrated to hold at one loop.