论文标题
浮力驱动的气泡流:中尺度结构在异质状态下操作的气泡柱中相对运动的作用
Buoyancy driven bubbly flows: role of meso-scale structures on the relative motion between phases in bubble columns operated in the heterogeneous regime
论文作者
论文摘要
从大颗粒雷诺数的气泡实验中,研究了异质状态中气泡柱的流体动力学,并且没有合并。用VoronoïTessellations分析的小尺度上的无效分数场$ \ VAREPSILON $对应于均质条件下的随机泊松过程(RPP),但与异质方面的RPP显着不同。与RPP的距离允许识别中尺度结构,即簇,空隙区域和中间区域。一系列论点表明,气泡运动是由这些结构的动力学驱动的。值得注意的是,簇中的气泡(分别在中间区域中)的速度更快,高达3.5倍(分别是终端速度的2倍),而不是空隙区域的气泡,这些绝对速度等于平均液体速度。此外,气泡的平均无条件相对速度从条件到中尺度结构的平均相对速度中回收,并由每个结构中气泡的比例加权。假设每个结构的浮力惯性平衡,相对速度与中尺度结构的特征大小和浓度有关。通过在大气体浅表速度下采用后一个数量值,提出了内部流结构的卡通。提出的论点是为了帮助理解为什么相对速度量表为$(gd \ varepsilon)^{1/2} $(用$ d $ the列的直径和$ g $ gravility的加速度)。所提出的卡通似乎与快速轨道机制一致,该机制对于所研究的中等泛力数,导致液体速度波动与相对速度成正比。还评论了合并对上述分析的潜在影响。
The hydrodynamics of bubble columns in the heterogeneous regime is investigated from experiments with bubbles at large particle Reynolds numbers and without coalescence. The void fraction field $\varepsilon$ at small scales, analyzed with Voronoï tessellations, corresponds to a Random Poisson Process (RPP) in homogeneous conditions but it significantly differs from a RPP in the heterogeneous regime. The distance to a RPP allows identifying meso-scale structures, namely clusters, void regions and intermediate regions. A series of arguments demonstrate that the bubble motion is driven by the dynamics of these structures. Notably, bubbles in clusters (respectively in intermediate regions) are moving up faster, up to 3.5 (respectively 2) times the terminal velocity, than bubbles in void regions those absolute velocity equals the mean liquid velocity. Besides, the mean unconditional relative velocity of bubbles is recovered from mean relative velocities conditional to meso-scale structures, weighted by the proportion of bubbles in each structure. Assuming buoyancy-inertia equilibrium for each structure, the relative velocity is related with the characteristic size and concentration of meso-scale structures. By taking the latter quantities values at large gas superficial velocities, a cartoon of the internal flow structure is proposed. Arguments are put forward to help understanding why the relative velocity scales as $(gD\varepsilon)^{1/2}$ (with $D$ the column's diameter and $g$ gravity's acceleration). The proposed cartoon seems consistent with a fast-track mechanism that, for the moderate Rouse numbers studied, leads to liquid velocity fluctuations proportional to the relative velocity. The potential impact of coalescence on the above analysis is also commented.