论文标题

关于在隐私限制下的估计和测试的统计复杂性

On the Statistical Complexity of Estimation and Testing under Privacy Constraints

论文作者

Lalanne, Clément, Garivier, Aurélien, Gribonval, Rémi

论文摘要

在尊重样本中个人的隐私同时产生准确的统计数据的挑战是重要的研究领域。我们研究了差异私有估计器类别的minimax下限。特别是,我们通过解决适当的运输问题来展示如何以插件方式来表征统计测试的功能。通过特定的耦合结构,此观察结果使我们能够得出Le Cam-Type和Fano-Type不平等,这不仅是针对差异隐私的常规定义,而且对于基于Renyi Divergence的定义。然后,我们继续以三个简单,充分处理的示例来说明我们的结果。特别是,我们表明问题类对由于隐私而造成的实用性降级至关重要。在某些情况下,我们表明,仅当隐私保护水平很高时,保持隐私才会显着降低性能。相反,对于其他问题,即使是适度的隐私保护也可能导致绩效大大降低。最后,我们证明了DP-SGLD算法是一种私有凸求解器,可以用高度的信心来最大程度地估计,因为它在样本的大小和隐私保护水平方面都提供了近乎最佳的结果。该算法适用于包括指数族在内的广泛参数估计程序。

The challenge of producing accurate statistics while respecting the privacy of the individuals in a sample is an important area of research. We study minimax lower bounds for classes of differentially private estimators. In particular, we show how to characterize the power of a statistical test under differential privacy in a plug-and-play fashion by solving an appropriate transport problem. With specific coupling constructions, this observation allows us to derive Le Cam-type and Fano-type inequalities not only for regular definitions of differential privacy but also for those based on Renyi divergence. We then proceed to illustrate our results on three simple, fully worked out examples. In particular, we show that the problem class has a huge importance on the provable degradation of utility due to privacy. In certain scenarios, we show that maintaining privacy results in a noticeable reduction in performance only when the level of privacy protection is very high. Conversely, for other problems, even a modest level of privacy protection can lead to a significant decrease in performance. Finally, we demonstrate that the DP-SGLD algorithm, a private convex solver, can be employed for maximum likelihood estimation with a high degree of confidence, as it provides near-optimal results with respect to both the size of the sample and the level of privacy protection. This algorithm is applicable to a broad range of parametric estimation procedures, including exponential families.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源