论文标题

计算系统发育品种的代数度

Computing algebraic degrees of phylogenetic varieties

论文作者

Puente, Luis David Garcia, Garrote-López, Marina, Shehu, Elima

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

A phylogenetic variety is an algebraic variety parameterized by a statistical model of the evolution of biological sequences along a tree. Understanding this variety is an important problem in the area of algebraic statistics with applications in phylogeny reconstruction. In the broader area of algebra statistics, there have been important theoretical advances in computing certain invariants associated to algebraic varieties arising in applications. Beyond the dimension and degree of a variety, one is interested in computing other algebraic degrees, such as the maximum likelihood degree and the Euclidean distance degree. Despite these efforts, the current literature lacks explicit computations of these invariants for the particular case of phylogenetic varieties. In our work, we fill this gap by computing these invariants for phylogenetic varieties arising from the simplest group-based models of nucleotide substitution Cavender-Farris-Neyman model, Jukes-Cantor model, Kimura 2-parameter model, and the Kimura 3-parameter model on small phylogenetic trees with at most 5 leaves.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源