论文标题

通过多教老师知识蒸馏自动图表自我监督学习

Automated Graph Self-supervised Learning via Multi-teacher Knowledge Distillation

论文作者

Wu, Lirong, Huang, Yufei, Lin, Haitao, Liu, Zicheng, Fan, Tianyu, Li, Stan Z.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Self-supervised learning on graphs has recently achieved remarkable success in graph representation learning. With hundreds of self-supervised pretext tasks proposed over the past few years, the research community has greatly developed, and the key is no longer to design more powerful but complex pretext tasks, but to make more effective use of those already on hand. This paper studies the problem of how to automatically, adaptively, and dynamically learn instance-level self-supervised learning strategies for each node from a given pool of pretext tasks. In this paper, we propose a novel multi-teacher knowledge distillation framework for Automated Graph Self-Supervised Learning (AGSSL), which consists of two main branches: (i) Knowledge Extraction: training multiple teachers with different pretext tasks, so as to extract different levels of knowledge with different inductive biases; (ii) Knowledge Integration: integrating different levels of knowledge and distilling them into the student model. Without simply treating different teachers as equally important, we provide a provable theoretical guideline for how to integrate the knowledge of different teachers, i.e., the integrated teacher probability should be close to the true Bayesian class-probability. To approach the theoretical optimum in practice, two adaptive knowledge integration strategies are proposed to construct a relatively "good" integrated teacher. Extensive experiments on eight datasets show that AGSSL can benefit from multiple pretext tasks, outperforming the corresponding individual tasks; by combining a few simple but classical pretext tasks, the resulting performance is comparable to other leading counterparts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源