论文标题
Bernoulli时钟:通过循环卷积对Bernoulli多项式的概率和组合解释
The Bernoulli clock: probabilistic and combinatorial interpretations of the Bernoulli polynomials by circular convolution
论文作者
论文摘要
众所周知,以$ b_0(x)= 1 $和$ b_n(x)$ for $ n> 0 $为特征的众所周知,b_n(x)/n!$的分解标准化的bernoulli polyenmials $ b_n(x)= b_n(x)/n!$是特征的。我们提供相关的特征:$ b_1(x)= x-1/2 $和$(1)^{n-1} b_n(x)$ for $ n> 0 $是$ n $ - fold圆形卷积$ b_1(x)$。同等地,$ 1-2^n b_n(x)$是$ x \ in(0,1)$的概率密度,$ n $ n $独立的随机变量的总和,每个变量的总和都带有beta $(1,2)$概率密度$ 2(1 -x)$ 2(1 -x)$ $ x \ in(0,1,1)$。该结果具有一个新颖的组合类似物,{\ em bernoulli clock}:标记按$ 2 n $小时的时钟的时间按均匀的随机排列$ \ {1,1,2,2,2,2,\ ldots,n,n,n \} $,这意味着要从$ 2 N $ 2 $ 2均匀地选择两次不同的时间,然后选择两次$ 1 $ 1,然后将两次均匀地标记为$ 1 $ 1,然后将两次相同的零售价为$ 1 $ 1 n -2 $小时,标记它们$ 2 $,依此类推。从小时$ 0 = 2n $开始,顺时针移动到标记为$ 1 $的第一个小时,以$ 2 $标记的第一小时继续前进,等等,依次在伯努利时钟围绕时钟顺时针延伸,直到两个小时的第一个标记为$ n $的第一个,以随机的小时$ i_n $ 1 $ 1 $ $ 1 $ $ 1 $和2n $。我们表明,对于每个正整数$ n $,事件$(i_n = 1)$具有概率$(1-2^n b_n(0))/(2n)$,其中$ n! b_n(0)= b_n(0)$是$ n $ th bernoulli号码。对于$ 1 \ le K \ le 2 n $,差$δ_n(k):= 1/(2n) - ¶(i_n = k)$是$ k $的多项式功能,令人惊讶的对称$Δ_n(2 n + 1- k)=(2 n + 1- k)=(-1)^nΔ_n(k) $ b_n(1-x)=(-1)^n b_n(x)$。
The factorially normalized Bernoulli polynomials $b_n(x) = B_n(x)/n!$ are known to be characterized by $b_0(x) = 1$ and $b_n(x)$ for $n >0$ is the antiderivative of $b_{n-1}(x)$ subject to $\int_0^1 b_n(x) dx = 0$. We offer a related characterization: $b_1(x) = x - 1/2$ and $(-1)^{n-1} b_n(x)$ for $n >0$ is the $n$-fold circular convolution of $b_1(x)$ with itself. Equivalently, $1 - 2^n b_n(x)$ is the probability density at $x \in (0,1)$ of the fractional part of a sum of $n$ independent random variables, each with the beta$(1,2)$ probability density $2(1-x)$ at $x \in (0,1)$. This result has a novel combinatorial analog, the {\em Bernoulli clock}: mark the hours of a $2 n$ hour clock by a uniform random permutation of the multiset $\{1,1, 2,2, \ldots, n,n\}$, meaning pick two different hours uniformly at random from the $2 n$ hours and mark them $1$, then pick two different hours uniformly at random from the remaining $2 n - 2$ hours and mark them $2$, and so on. Starting from hour $0 = 2n$, move clockwise to the first hour marked $1$, continue clockwise to the first hour marked $2$, and so on, continuing clockwise around the Bernoulli clock until the first of the two hours marked $n$ is encountered, at a random hour $I_n$ between $1$ and $2n$. We show that for each positive integer $n$, the event $( I_n = 1)$ has probability $(1 - 2^n b_n(0))/(2n)$, where $n! b_n(0) = B_n(0)$ is the $n$th Bernoulli number. For $ 1 \le k \le 2 n$, the difference $δ_n(k):= 1/(2n) - ¶( I_n = k)$ is a polynomial function of $k$ with the surprising symmetry $δ_n( 2 n + 1 - k) = (-1)^n δ_n(k)$, which is a combinatorial analog of the well known symmetry of Bernoulli polynomials $b_n(1-x) = (-1)^n b_n(x)$.