论文标题
全球非均匀渐近稳定性问题的二分法方法:三角形均匀化
The dichotomy spectrum approach for a global nonuniform asymptotic stability problem: Triangular case via uniformization
论文作者
论文摘要
通过考虑非自主差异系统的全球渐近差异稳定性,我们引入了一个全球渐近差异稳定性,其对自主案例的限制与经典标记相关 - 羊像群构相关:我们证明了该猜想可以使构型的界限符合非界限的界限。执行证明的一种必不可少的工具是一种必要且充分的条件,可确保上块三角形线性差分系统的非均匀指数二分法的特性。我们还获得了一些本身具有兴趣的副产品,例如,在上述频谱上,对角显着性特性。
By considering the nonuniform exponential dichotomy spectrum, we introduce a global asymptotic nonuniform stability conjecture for nonautonomous differential systems, whose restriction to the autonomous case is related to the classical Markus--Yamabe Conjecture: we prove that the conjecture is verified for a family of triangular systems of nonautonomous differential equations satisfying boundedness assumptions. An essential tool to carry out the proof is a necessary and sufficient condition ensuring the property of nonuniform exponential dichotomy for upper block triangular linear differential systems. We also obtain some byproducts having interest on itself, such as, the diagonal significance property in terms on the above mentioned spectrum.