论文标题

部分可观测时空混沌系统的无模型预测

An Interpretable Machine Learning Framework for Modeling High-Resolution Spectroscopic Data

论文作者

Gully-Santiago, Michael A., Morley, Caroline V.

论文摘要

梯形光谱与合成模型的比较已成为计算统计挑战,超过一万个单个光谱线影响了典型的酷星梯形光谱。三流性的工件,不完美的行列表,不精确的连续体放置和僵化的模型挫败了这些信息丰富的数据集的科学承诺。在这里,我们首次亮相一个可解释的机器学习框架“Blasé”,该框架解决了这些挑战和其他挑战。半经验方法可以看作是“转移学习” - 关于无噪声预报的合成光谱模型的第一个预训练模型,然后学习从整个光谱拟合到观察到的光谱的线深度和宽度的校正。自动差异模型采用后传播,这是赋予现代深度学习和神经网络能力的基本算法。但是,在这里,40,000多个参数象征着物理解释的线轮廓属性,例如振幅,宽度,位置和形状,以及径向速度和旋转宽度。这种混合数据/模型驱动的框架允许同时对恒星和矫尿线进行关节建模,这是一种潜在的变换步骤,可减轻近红外的有害telluric污染。 Blasé方法既是反卷积工具,又是半经验模型。通用脚手架可能对许多科学应用可以扩展,包括精确的径向速度,多普勒成像,化学丰度和遥感。它稀疏的矩阵体系结构和GPU加速使Blasé迅速。基于Pytorch的开源代码包括教程,应用程序编程接口(API)文档等。我们展示了该工具如何拟合到现有的Python光谱生态系统中,展示了一系列天体物理应用,并讨论局限性和未来扩展。

Comparison of echelle spectra to synthetic models has become a computational statistics challenge, with over ten thousand individual spectral lines affecting a typical cool star echelle spectrum. Telluric artifacts, imperfect line lists, inexact continuum placement, and inflexible models frustrate the scientific promise of these information-rich datasets. Here we debut an interpretable machine-learning framework "blasé" that addresses these and other challenges. The semi-empirical approach can be viewed as "transfer learning" -- first pre-training models on noise-free precomputed synthetic spectral models, then learning the corrections to line depths and widths from whole-spectrum fitting to an observed spectrum. The auto-differentiable model employs back-propagation, the fundamental algorithm empowering modern Deep Learning and Neural Networks. Here, however, the 40,000+ parameters symbolize physically interpretable line profile properties such as amplitude, width, location, and shape, plus radial velocity and rotational broadening. This hybrid data-/model- driven framework allows joint modeling of stellar and telluric lines simultaneously, a potentially transformative step forwards for mitigating the deleterious telluric contamination in the near-infrared. The blasé approach acts as both a deconvolution tool and semi-empirical model. The general purpose scaffolding may be extensible to many scientific applications, including precision radial velocities, Doppler imaging, chemical abundances, and remote sensing. Its sparse-matrix architecture and GPU-acceleration make blasé fast. The open-source PyTorch-based code includes tutorials, Application Programming Interface (API) documentation, and more. We show how the tool fits into the existing Python spectroscopy ecosystem, demonstrate a range of astrophysical applications, and discuss limitations and future extensions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源