论文标题
lax末端的笔记
Notes on Lax Ends
论文作者
论文摘要
在丰富的类别理论中,外天然转变的概念比普通的自然变换的概念更为基本,而末端,普遍的外表外变换起着至关重要的作用。另一方面,2类别理论利用了其他几种自然变换,例如宽松和伪转换。对于这些弱转换,已知我们可以定义相应的外部外变换或末端。但是,很少有文献详细描述这种结果。我们提供了LAX端的详细计算,包括其与LAX极限的关系。我们证明了生命的副毛阳性引理是植物Yoneda引理的双重双重,并且还表明,任何宽松末端的重量都是馅饼的重量,但对于lax极限而言可能不是重量。
In enriched category theory, the notion of extranatural transformations is more fundamental than that of ordinary natural transformations, and the ends, the universal extranatural transformations, play a critical role. On the other hand, 2-category theory makes use of several other natural transformations, such as lax and pseudo transformations. For these weak transformations, it is known that we can define the corresponding extranatural transformations or ends. However, there is little literature describing such results in detail. We provide a detailed calculation of the lax end, including its relation to the lax limits. We prove the bicategorical coYoneda lemma as the dual of the bicategorical Yoneda lemma, and also show that the weight of any lax end is a PIE weight, but it might not be a weight for a lax limit.