论文标题
上坡反应扩散多物种相互作用的颗粒系统
Uphill in reaction-diffusion multi-species interacting particles systems
论文作者
论文摘要
我们研究了具有多种粒子和硬核相互作用的反应扩散过程。我们通过外部储层向系统添加边界驾驶,这些储层注入和去除颗粒,从而产生固定电流。我们认为,平均职业的时间演变会演变为与线性反应的耦合扩散方程系统的离散版本。特别是,我们确定了这种线性反应扩散系统的特定一参数家族,其中可以通过双重过程获得流体动力学极限行为。我们表明,对于晶格上的离散粒子系统,可能有部分上坡扩散,而在流体动力极限中却丢失了。
We study reaction-diffusion processes with multi-species of particles and hard-core interaction. We add boundary driving to the system by means of external reservoirs which inject and remove particles, thus creating stationary currents. We consider the condition that the time evolution of the average occupation evolves as the discretized version of a system of coupled diffusive equations with linear reactions. In particular, we identify a specific one-parameter family of such linear reaction-diffusion systems where the hydrodynamic limit behaviour can be obtained by means of a dual process. We show that partial uphill diffusion is possible for the discrete particle systems on the lattice, whereas it is lost in the hydrodynamic limit.