论文标题
同时使用神经网络的增材制造的构建方向,部分细分和拓扑优化
Concurrent build direction, part segmentation, and topology optimization for additive manufacturing using neural networks
论文作者
论文摘要
我们提出了一种基于神经网络的拓扑优化方法,旨在减少添加剂制造中支持结构的使用。我们的方法使用一个网络体系结构,该网络体系结构允许同时确定优化:(1)部分分割,(2)每个部分的拓扑结构,以及(3)每个部分的构建方向共同使支持结构的数量共同最小化。通过培训,网络在连续的3D空间中学习了材料密度和段分类。鉴于有规定的负载和位移边界条件的问题域,神经网络将其作为voxelized域的输入3D坐标作为训练样品,并输出连续密度场。由于用于拓扑优化的神经网络了解了密度分布场,因此可以从神经网络的输入输出关系中获得密度梯度的分析解决方案。我们在数量分数约束方面证明了我们在几个合规性最小化问题上的方法,其中添加了支持量最小化作为目标函数的附加标准。我们表明,与没有分割的组合打印角度和拓扑优化相比,与拓扑和打印角度优化同时优化零件分割以及拓扑和打印角度优化进一步降低了支撑结构。
We propose a neural network-based approach to topology optimization that aims to reduce the use of support structures in additive manufacturing. Our approach uses a network architecture that allows the simultaneous determination of an optimized: (1) part segmentation, (2) the topology of each part, and (3) the build direction of each part that collectively minimize the amount of support structure. Through training, the network learns a material density and segment classification in the continuous 3D space. Given a problem domain with prescribed load and displacement boundary conditions, the neural network takes as input 3D coordinates of the voxelized domain as training samples and outputs a continuous density field. Since the neural network for topology optimization learns the density distribution field, analytical solutions to the density gradient can be obtained from the input-output relationship of the neural network. We demonstrate our approach on several compliance minimization problems with volume fraction constraints, where support volume minimization is added as an additional criterion to the objective function. We show that simultaneous optimization of part segmentation along with the topology and print angle optimization further reduces the support structure, compared to a combined print angle and topology optimization without segmentation.