论文标题

双线性$θ$ -Typecalderón-Zygmund操作员及其在RD空间上的通用加权莫雷空间上的换向器

Bilinear $θ$-type Calderón-Zygmund operators and its commutator on generalized weighted Morrey spaces over RD-spaces

论文作者

He, Suixin, Tao, Shuangping

论文摘要

RD-空间$ \ Mathcal {X} $是Coifman的均匀类型的一个空间,Weiss和Weiss具有额外的属性,该属性是$ \ Mathcal {x} $中的反向加倍属性所具有的。在这种情况下,作者建立了biLinear $θ$-TypeCalderón-Zygmund运算符$t_θ$及其换向器$ [B_1,B_2,T_θ] $由函数$ B_1,B_2,B_2 \ in BMO(μ)$(μ)$t_t_θ$产生的通用Morrey Morrey Morrey Morrey Morrey Morrey Morrey Morrey Morrey b_2 $ \ MATHCAL {M}^{p,ϕ}(ω)$和概括的弱莫雷空间$ w \ Mathcal {m}^{p,ϕ}}(ω)$在RD空间上。

An RD-space $\mathcal{X}$ is a space of homogeneous type in the sense of Coifman and Weiss with the additional property that a reverse doubling property holds in $\mathcal{X}$. In this setting, the authors establish the boundedness of bilinear $θ$-type Calderón-Zygmund operator $T_θ$ and its commutator $[b_1,b_2,T_θ]$ generated by the function $b_1,b_2\in BMO(μ)$ and $T_θ$ on generalized weighted Morrey space $\mathcal{M}^{p,ϕ}(ω)$ and generalized weighted weak Morrey space $W\mathcal{M}^{p,ϕ}(ω)$ over RD-spaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源