论文标题

用于确定反射光谱中小行星矿物质成分的神经网络

Neural network for determining an asteroid mineral composition from reflectance spectra

论文作者

Korda, David, Penttilä, Antti, Klami, Arto, Kohout, Tomáš

论文摘要

小行星的化学和矿物质组成反映了我们太阳系的形成和历史。这些知识对于行星防御和空间资源利用率也很重要。我们旨在开发一种基于神经网络的快速,强大的方法,用于从其可见和近红外光谱中得出硅酸盐材料的矿物模态和化学成分。该方法应能够在不进行大量预处理的情况下处理原始光谱。我们设计了一个具有两个隐藏层的卷积神经网络,用于分析光谱,并使用标记的反射光谱进行了训练。在培训中,我们使用了一个数据集,该数据集由存储在Relab和C-Tape数据库中的真实硅酸盐样品的反射率光谱组成,即橄榄石,邻苯二酚,Clinopyroxene,它们的混合物以及富含橄榄石 - 吡啶 - 吡啶烯富含陨石。我们在两个数据集上使用了该模型。首先,我们在测试数据集上评估了模型可靠性,在该数据集将模型分类与已知组成参考值进行了比较。单个分类结果主要在正确的值围绕正确值的10个百分点间隔内。其次,我们将S-Complex(Q-Type和V-Type,还包括A型)小行星的反射光谱分类为已知的Bus-demeo分类类别。 S型和Q型小行星的预测矿物化学成分与普通软骨的化学成分一致。 V型和A型小行星的模态丰度分别显示出邻苯二烯和橄榄石的主要贡献。此外,我们对S型和Q-Type小行星的矿物模态组成的预测表明,橄榄石的橄榄石显然消耗与其诊断吸收的空间风化相关。这种趋势与以前的辉石对橄榄石相对于空间风化的反应较慢的结果一致。

Chemical and mineral compositions of asteroids reflect the formation and history of our Solar System. This knowledge is also important for planetary defence and in-space resource utilisation. We aim to develop a fast and robust neural-network-based method for deriving the mineral modal and chemical compositions of silicate materials from their visible and near-infrared spectra. The method should be able to process raw spectra without significant pre-processing. We designed a convolutional neural network with two hidden layers for the analysis of the spectra, and trained it using labelled reflectance spectra. For the training, we used a dataset that consisted of reflectance spectra of real silicate samples stored in the RELAB and C-Tape databases, namely olivine, orthopyroxene, clinopyroxene, their mixtures, and olivine-pyroxene-rich meteorites. We used the model on two datasets. First, we evaluated the model reliability on a test dataset where we compared the model classification with known compositional reference values. The individual classification results are mostly within 10 percentage-point intervals around the correct values. Second, we classified the reflectance spectra of S-complex (Q-type and V-type, also including A-type) asteroids with known Bus-DeMeo taxonomy classes. The predicted mineral chemical composition of S-type and Q-type asteroids agree with the chemical composition of ordinary chondrites. The modal abundances of V-type and A-type asteroids show a dominant contribution of orthopyroxene and olivine, respectively. Additionally, our predictions of the mineral modal composition of S-type and Q-type asteroids show an apparent depletion of olivine related to the attenuation of its diagnostic absorptions with space weathering. This trend is consistent with previous results of the slower pyroxene response to space weathering relative to olivine.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源