论文标题

对抗训练的稳定性分析和概括界

Stability Analysis and Generalization Bounds of Adversarial Training

论文作者

Xiao, Jiancong, Fan, Yanbo, Sun, Ruoyu, Wang, Jue, Luo, Zhi-Quan

论文摘要

在对抗机器学习中,深度神经网络可以符合训练数据集上的对抗示例,但在测试集上的概括能力较差。这种现象称为强大的过度拟合,可以观察到当对抗性数据集中训练神经网(包括SVHN,CIFAR-10,CIFAR-10,CIFAR-100和IMAGENET)时可以观察到。在本文中,我们通过使用统一稳定性的工具来研究对抗性训练的强大过度问题。一个主要的挑战是,外部函数(作为内部函数的最大化)是非平滑的,因此不能应用标准技术(例如,Hardt等,2016)。我们的方法是考虑$η$ -Approximate平滑度:我们表明,外部功能满足了这种修改后的平滑度,$η$是与对抗性扰动$ε$相关的常数。基于此,我们在$η$ - $ apptroximate平滑功能的一般类别上得出了基于稳定性的概括范围,以涵盖对抗性损失。我们的结果表明,当$ t $较大时,稳健的测试精度在$ε$中降低,速度在$ω(ε\ sqrt {t})$和$ \ Mathcal {o}(εt)$之间。在实践中也观察到了这种现象。此外,我们证明了一些用于对抗训练的流行技术(例如,早期停止,环状学习率和随机重量平均)在理论上是稳定性的。

In adversarial machine learning, deep neural networks can fit the adversarial examples on the training dataset but have poor generalization ability on the test set. This phenomenon is called robust overfitting, and it can be observed when adversarially training neural nets on common datasets, including SVHN, CIFAR-10, CIFAR-100, and ImageNet. In this paper, we study the robust overfitting issue of adversarial training by using tools from uniform stability. One major challenge is that the outer function (as a maximization of the inner function) is nonsmooth, so the standard technique (e.g., hardt et al., 2016) cannot be applied. Our approach is to consider $η$-approximate smoothness: we show that the outer function satisfies this modified smoothness assumption with $η$ being a constant related to the adversarial perturbation $ε$. Based on this, we derive stability-based generalization bounds for stochastic gradient descent (SGD) on the general class of $η$-approximate smooth functions, which covers the adversarial loss. Our results suggest that robust test accuracy decreases in $ε$ when $T$ is large, with a speed between $Ω(ε\sqrt{T})$ and $\mathcal{O}(εT)$. This phenomenon is also observed in practice. Additionally, we show that a few popular techniques for adversarial training (e.g., early stopping, cyclic learning rate, and stochastic weight averaging) are stability-promoting in theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源