论文标题
相关灭绝和单荧光团漂白显微镜,用于金纳米颗粒上的配体定量
Correlative extinction and single fluorophore bleaching microscopy for ligand quantification on gold nanoparticles
论文作者
论文摘要
纳米颗粒(NP)是有前途的治疗递送剂,但越来越明显的是,在NP上表现出细胞结合配体的数量和方式会影响治疗性的最终命运。每当NP与生物分子偶联时,都会产生异源的NP,并且需要对粒子配体结构的亚群的细节进行表征,以可靠地解释基于NP的数据。我们报告了一种光学显微镜方法,用于定量评估由金NP(GNP)组成的单个粒子基础,该样品由金NP(GNP)组成,该样品被用Alexa647(TF)标记的人类全转铁蛋白荧光蛋白荧光素(TF)。我们在玻璃表面上的NP-配体构建体上使用了广场荧光和消光显微镜,并进行了相关分析,该分析在空间上与单个GNP的光学灭绝一起在空间上共同存在衍射受限的源。采用了荧光发射的光漂白步骤分析,以估计有助于检测到的发射速率的荧光团数量。该方法量化了每个GNP附着的荧光生物分子的数量,混合群体中存在的未结合的GNP和未结合的TF的数量,以及共轭GNP的大小和颗粒内聚类倾向。我们发现,当在单粒子级别进行分析时,在GNP种群中每GNP的TF配体数量较高,从集合平均方法中揭示了无法访问的非平凡统计分布的情况。
Nanoparticles (NPs) are promising therapeutic delivery agents, yet it is increasingly apparent that the number and manner of presentation of cell binding ligands on the NP can affect the eventual fate of the therapeutic. Whenever NPs are conjugated with biomolecules, a heterogenous population of decorated NPs will be produced and the details of the subpopulations of particle-ligand structures needs to be characterised for a reliable interpretation of NP-based data. We report an optical microscopy method to quantitatively evaluate the conjugation on a single particle basis in samples consisting of gold NPs (GNPs) decorated with human holo-transferrin fluorescently labelled with Alexa647 (Tf). We employed widefield fluorescence and extinction microscopy on NP-ligand constructs sparesly deposited onto a glass surface, alongside a correlative analysis which spatially co-localises diffraction-limited sources of fluorescence with the optical extinction by individual GNPs. A photobleaching step analysis of the fluorescence emission was employed to estimate the number of fluorophores contributing to the detected emission rate. The method quantifies the number of fluorescent biomolecules attached per GNP, the numbers of unconjugated GNPs and unbound Tf present within the mixed population, and the size and intraparticle clustering propensity of conjugated GNPs. We found a high variability in the number of Tf ligands per GNP within the GNP population, when analysed at the single-particle level, unraveling a non-trivial statistical distribution not accessible in ensemble averaged approaches