论文标题
将分类预测与连续信息合并,以在不断变化的环境中进行轻巧的视觉位置识别
Merging Classification Predictions with Sequential Information for Lightweight Visual Place Recognition in Changing Environments
论文作者
论文摘要
低空视觉位置识别(VPR)是一个高度活跃的研究主题。移动机器人的应用程序通常在低端硬件下运行,甚至更具硬件的系统仍然可以从释放其他导航任务的板系统资源中受益。这项工作通过提出一种基于二元加权分类器网络与一维卷积网络(称为合并的一维卷积网络)的组合的新型系统来解决轻量级VPR。融合多种VPR技术的最新工作主要集中于提高VPR性能,计算效率没有得到高度优先级。相比之下,我们设计了优先考虑低推理时间的技术,从机器学习文献中汲取灵感,在该文献中,分类器的有效组合是一个经过深入研究的主题。我们的实验表明,合并达到的推理时间低至1毫秒,速度明显快于其他良好的轻量级VPR技术,同时在几种视觉变化(例如季节性变化和视图点横向移动)上实现了可比或出色的VPR性能。
Low-overhead visual place recognition (VPR) is a highly active research topic. Mobile robotics applications often operate under low-end hardware, and even more hardware capable systems can still benefit from freeing up onboard system resources for other navigation tasks. This work addresses lightweight VPR by proposing a novel system based on the combination of binary-weighted classifier networks with a one-dimensional convolutional network, dubbed merger. Recent work in fusing multiple VPR techniques has mainly focused on increasing VPR performance, with computational efficiency not being highly prioritized. In contrast, we design our technique prioritizing low inference times, taking inspiration from the machine learning literature where the efficient combination of classifiers is a heavily researched topic. Our experiments show that the merger achieves inference times as low as 1 millisecond, being significantly faster than other well-established lightweight VPR techniques, while achieving comparable or superior VPR performance on several visual changes such as seasonal variations and viewpoint lateral shifts.