论文标题
多模式激光雷达大满贯的基准,与GNSS贬低的环境中的地面真相
A Benchmark for Multi-Modal Lidar SLAM with Ground Truth in GNSS-Denied Environments
论文作者
论文摘要
基于激光雷达的同时定位和映射(SLAM)方法在自主机器人系统中取得了巨大成功。这部分是由于强大的大满贯算法和新成本痛产物的出现的高临界性。这项研究基准了当前最新的激光雷达大满贯算法,其多模式激光雷达传感器设置展示了各种扫描方式(旋转和固态)和传感技术,以及在移动传感和计算平台上安装在底部。我们扩展了以前的多模式多级数据集,并使用其他序列和新的地面真实数据来源。具体而言,我们提出了一种新的多模式多模式的大型批准和基于ICP的传感器融合方法来生成地面真相图。使用这些地图,我们使用自然分布变换(NDT)方法匹配实时点云数据,以通过完整的6 DOF姿势估计获得地面真相。这个新颖的地面真相数据利用高分辨率旋转和固态激光痛。我们还包括带有GNSS-RTK数据的新开放式序列以及具有运动捕获(MOCAP)地面真相的其他室内序列,并使用MOCAP数据补充了先前的森林序列。我们对十种不同的SLAM算法和LIDAR组合实现的定位精度进行分析。我们还报告了四个不同的计算平台和总共五个设置(英特尔和Jetson ARM CPU)的资源利用。我们的实验结果表明,对于不同类型的传感器,当前最新的激光雷达大满贯算法的性能差异很大。更多结果,代码和数据集可在以下位置找到:\ href {https://github.com/tiers/tiers/tiers-lidars-dataset-enhanced} {github.com/tiers/tiers/tiers/tiers-lidars-lidars-dataset-enhanced。
Lidar-based simultaneous localization and mapping (SLAM) approaches have obtained considerable success in autonomous robotic systems. This is in part owing to the high-accuracy of robust SLAM algorithms and the emergence of new and lower-cost lidar products. This study benchmarks current state-of-the-art lidar SLAM algorithms with a multi-modal lidar sensor setup showcasing diverse scanning modalities (spinning and solid-state) and sensing technologies, and lidar cameras, mounted on a mobile sensing and computing platform. We extend our previous multi-modal multi-lidar dataset with additional sequences and new sources of ground truth data. Specifically, we propose a new multi-modal multi-lidar SLAM-assisted and ICP-based sensor fusion method for generating ground truth maps. With these maps, we then match real-time pointcloud data using a natural distribution transform (NDT) method to obtain the ground truth with full 6 DOF pose estimation. This novel ground truth data leverages high-resolution spinning and solid-state lidars. We also include new open road sequences with GNSS-RTK data and additional indoor sequences with motion capture (MOCAP) ground truth, complementing the previous forest sequences with MOCAP data. We perform an analysis of the positioning accuracy achieved with ten different SLAM algorithm and lidar combinations. We also report the resource utilization in four different computational platforms and a total of five settings (Intel and Jetson ARM CPUs). Our experimental results show that current state-of-the-art lidar SLAM algorithms perform very differently for different types of sensors. More results, code, and the dataset can be found at: \href{https://github.com/TIERS/tiers-lidars-dataset-enhanced}{github.com/TIERS/tiers-lidars-dataset-enhanced.