论文标题
使用查询性能预测的无监督搜索算法配置
Unsupervised Search Algorithm Configuration using Query Performance Prediction
论文作者
论文摘要
对于廉价的开发人员来说,搜索引擎配置可能非常困难。取而代之的是,可以使用自动配置方法来加快开发时间。但是,这样的自动过程通常需要相关标签来培训监督模型。在这项工作中,我们建议一个基于查询性能预测的简单解决方案,该解决方案不需要相关性标签,而只需要在给定域中的查询示例。使用两个示例用途,我们证明了解决方案的优点。
Search engine configuration can be quite difficult for inexpert developers. Instead, an auto-configuration approach can be used to speed up development time. Yet, such an automatic process usually requires relevance labels to train a supervised model. In this work, we suggest a simple solution based on query performance prediction that requires no relevance labels but only a sample of queries in a given domain. Using two example usecases we demonstrate the merits of our solution.