论文标题

解释卷积神经网络对量子自旋系统的低维近似

Interpreting convolutional neural networks' low dimensional approximation to quantum spin systems

论文作者

Ju, Yilong, Alam, Shah Saad, Minoff, Jonathan, Anselmi, Fabio, Pu, Han, Patel, Ankit

论文摘要

卷积神经网络(CNN)已与变异的蒙特卡洛方法一起使用,以找到取得巨大成功的量子多体旋转系统的基础状态。但是,为了这样做,只有线性的许多变异参数只需绕过``尺寸的诅咒''的CNN,并成功地近似于指数较大的Hilbert空间上的波函数。在我们的工作中,我们对CNN如何优化自旋系统的学习以及研究CNN的低维近似值提供了理论和实验分析。我们首先量化了训练过程中基础旋转系统的物理对称性的作用。我们将洞察力纳入了一种新的培训算法中,并证明了其提高的效率,准确性和鲁棒性。然后,我们通过查看卷积滤波器的大小捕获的纠缠频谱来进一步研究CNN近似波形的能力。我们的见解表明,CNN是ANSATZ,其根本围绕输入字符串的$ k $ -Motifs的发生统计数据。我们使用这种动机来提供浅的CNN ANSATZ,并根据其他众所周知的统计和物理Ansatzes(例如最大熵(Maxent)和纠缠的Plaquette plaquette corelator产品状态(EP-CPS))提供统一的理论解释。使用回归分析,我们发现了CNN的不同图案期望值的近似值之间的进一步关系。我们的结果使我们能够对CNN如何成功近似量子自旋汉密尔顿人获得全面,改进的了解,并利用该理解来提高CNN的性能。

Convolutional neural networks (CNNs) have been employed along with Variational Monte Carlo methods for finding the ground state of quantum many-body spin systems with great success. In order to do so, however, a CNN with only linearly many variational parameters has to circumvent the ``curse of dimensionality'' and successfully approximate a wavefunction on an exponentially large Hilbert space. In our work, we provide a theoretical and experimental analysis of how the CNN optimizes learning for spin systems, and investigate the CNN's low dimensional approximation. We first quantify the role played by physical symmetries of the underlying spin system during training. We incorporate our insights into a new training algorithm and demonstrate its improved efficiency, accuracy and robustness. We then further investigate the CNN's ability to approximate wavefunctions by looking at the entanglement spectrum captured by the size of the convolutional filter. Our insights reveal the CNN to be an ansatz fundamentally centered around the occurrence statistics of $K$-motifs of the input strings. We use this motivation to provide the shallow CNN ansatz with a unifying theoretical interpretation in terms of other well-known statistical and physical ansatzes such as the maximum entropy (MaxEnt) and entangled plaquette correlator product states (EP-CPS). Using regression analysis, we find further relationships between the CNN's approximations of the different motifs' expectation values. Our results allow us to gain a comprehensive, improved understanding of how CNNs successfully approximate quantum spin Hamiltonians and to use that understanding to improve CNN performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源