论文标题

多视图信息融合使用多视图变种自动编码器来预测股骨近端强度

Multi-view information fusion using multi-view variational autoencoders to predict proximal femoral strength

论文作者

Zhao, Chen, Keyak, Joyce H, Cao, Xuewei, Sha, Qiuying, Wu, Li, Luo, Zhe, Zhao, Lanjuan, Tian, Qing, Qiu, Chuan, Su, Ray, Shen, Hui, Deng, Hong-Wen, Zhou, Weihua

论文摘要

本文的目的是设计一个基于深度学习的模型,以使用多视图信息融合来预测股骨近端强度。方法:我们使用多视图变量自动编码器(MVAE)开发了新模型,以进行功能表示学习和用于多视图信息融合的专家(POE)模型的产品。我们将拟议的模型应用于内部路易斯安那州骨质疏松研究(LOS)的组合,其中包括931名男性受试者,其中包括345名非裔美国人和586名高加索人。通过对高斯分布产物的分析解决方案,我们采用了变异推断来训练设计的MVAE-POE模型以执行常见的潜在特征提取。我们进行了全基因组关联研究(GWAS),以选择256种具有最低P值的遗传变异,适用于股骨近端强度和整体基因组序列(WGS)特征(WGS)特征和DXA衍生的成像特征,以预测近端股骨强度。结果:通过集成WGS功能和DXA衍生的成像功能,获得了秋季断裂负荷的最佳预测模型。设计模型使用秋季载荷的线性模型,秋季载荷的非线性模型和姿态载荷的非线性模型来预测股骨近端骨折载荷的平均绝对百分比误差为18.04%,6.84%和7.95%。与现有的多视图信息融合方法相比,提出的MVAE-POE取得了最佳性能。结论:所提出的模型能够使用WGS功能和DXA衍生的成像功能来预测股骨近端强度。尽管此工具不能替代使用QCT图像的FEA,但它可以改善对髋部骨折风险的评估,同时避免QCT的辐射剂量增加和临床成本增加。

The aim of this paper is to design a deep learning-based model to predict proximal femoral strength using multi-view information fusion. Method: We developed new models using multi-view variational autoencoder (MVAE) for feature representation learning and a product of expert (PoE) model for multi-view information fusion. We applied the proposed models to an in-house Louisiana Osteoporosis Study (LOS) cohort with 931 male subjects, including 345 African Americans and 586 Caucasians. With an analytical solution of the product of Gaussian distribution, we adopted variational inference to train the designed MVAE-PoE model to perform common latent feature extraction. We performed genome-wide association studies (GWAS) to select 256 genetic variants with the lowest p-values for each proximal femoral strength and integrated whole genome sequence (WGS) features and DXA-derived imaging features to predict proximal femoral strength. Results: The best prediction model for fall fracture load was acquired by integrating WGS features and DXA-derived imaging features. The designed models achieved the mean absolute percentage error of 18.04%, 6.84% and 7.95% for predicting proximal femoral fracture loads using linear models of fall loading, nonlinear models of fall loading, and nonlinear models of stance loading, respectively. Compared to existing multi-view information fusion methods, the proposed MVAE-PoE achieved the best performance. Conclusion: The proposed models are capable of predicting proximal femoral strength using WGS features and DXA-derived imaging features. Though this tool is not a substitute for FEA using QCT images, it would make improved assessment of hip fracture risk more widely available while avoiding the increased radiation dosage and clinical costs from QCT.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源