论文标题

使用涡旋相多样性的焦距 - 平面波侧感测的深度学习方法

A deep learning approach for focal-plane wavefront sensing using vortex phase diversity

论文作者

Quesnel, M., de Xivry, G. Orban, Louppe, G., Absil, O.

论文摘要

高对比度成像仪器的性能受波前误差的限制,尤其是非共同路径畸变(NCPA)。焦平面波前传感(FPWFS)适合处理NCPA,因为它测量了最重要的畸变,即在科学焦平面上。尽管如此,从焦点平面图像中的相位检索结果是,在拟的瞳孔平面阶段的符号歧义中会导致阶段。当前用于解决标志歧义的相位多样性方法倾向于减少科学占空比,即观察到专用于科学的时间的比例。在这项工作中,我们探讨了如何将涡旋冠冕提供的相位多样性与现代深度学习技术相结合,以执行有效的FPWF而不会丢失观察时间。我们应用了最先进的卷积神经网络效应,以从模拟的焦平平面图像中推断相差。标量和矢量涡流冠状动脉(SVC和VVC)的两种情况使用分别分别分配圆形极化状态获得的单个后刺点扩散函数(PSF)或两个PSF。在两种情况下,即使在低信噪比(S/NS)下,符号歧义都已正确提高。使用SVC或VVC,我们的性能与使用液相位的PSF相比,表现非常相似,除了与其他方法相比,SVC略有表现略有下降的差点。当对具有广泛波前误差和噪声水平的数据进行训练时,模型最终表现出很大的鲁棒性。拟议的FPWFS技术为使用Vortex Coronagraph提供了100%的科学责任周期,并且在SVC的情况下不需要任何其他硬件。

The performance of high-contrast imaging instruments is limited by wavefront errors, in particular by non-common path aberrations (NCPAs). Focal-plane wavefront sensing (FPWFS) is appropriate to handle NCPAs because it measures the aberration where it matters the most, that is to say at the science focal plane. Phase retrieval from focal-plane images results, nonetheless, in a sign ambiguity for even modes of the pupil-plane phase. The phase diversity methods currently used to solve the sign ambiguity tend to reduce the science duty cycle, that is, the fraction of observing time dedicated to science. In this work, we explore how we can combine the phase diversity provided by a vortex coronagraph with modern deep learning techniques to perform efficient FPWFS without losing observing time. We applied the state-of-the-art convolutional neural network EfficientNet-B4 to infer phase aberrations from simulated focal-plane images. The two cases of scalar and vector vortex coronagraphs (SVC and VVC) were considered using a single post-coronagraphic point spread function (PSF) or two PSFs obtained by splitting the circular polarization states, respectively. The sign ambiguity has been properly lifted in both cases even at low signal-to-noise ratios (S/Ns). Using either the SVC or the VVC, we have reached a very similar performance compared to using phase diversity with a defocused PSF, except for high levels of aberrations where the SVC slightly underperforms compared to the other approaches. The models finally show great robustness when trained on data with a wide range of wavefront errors and noise levels. The proposed FPWFS technique provides a 100% science duty cycle for instruments using a vortex coronagraph and does not require any additional hardware in the case of the SVC.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源