论文标题

gflownets和变异推理

GFlowNets and variational inference

论文作者

Malkin, Nikolay, Lahlou, Salem, Deleu, Tristan, Ji, Xu, Hu, Edward, Everett, Katie, Zhang, Dinghuai, Bengio, Yoshua

论文摘要

本文在两个概率算法的家族之间建立了桥梁:(层次)变异推理(VI),通常用于在连续空间上建模分布,以及生成流动网络(GFLOWNETS),这些分布已用于分布,用于分布在离散结构上的分布,例如图形。我们证明,在某些情况下,VI算法在其学习目标的预期梯度的平等意义上等同于Gflownets的特殊情况。然后,我们指出两个家庭之间的差异,并显示这些差异如何实验出现。值得注意的是,从强化学习中借用想法的Gflownets比VI更适合于vi到政策培训,而没有重要的采样造成的高梯度差异。我们认为,Gflownets的这种属性可以为捕获多模式目标分布的多样性提供优势。

This paper builds bridges between two families of probabilistic algorithms: (hierarchical) variational inference (VI), which is typically used to model distributions over continuous spaces, and generative flow networks (GFlowNets), which have been used for distributions over discrete structures such as graphs. We demonstrate that, in certain cases, VI algorithms are equivalent to special cases of GFlowNets in the sense of equality of expected gradients of their learning objectives. We then point out the differences between the two families and show how these differences emerge experimentally. Notably, GFlowNets, which borrow ideas from reinforcement learning, are more amenable than VI to off-policy training without the cost of high gradient variance induced by importance sampling. We argue that this property of GFlowNets can provide advantages for capturing diversity in multimodal target distributions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源