论文标题

Swenet:用于剪切波弹力图的物理信息深神经网络(PINN)

SWENet: a physics-informed deep neural network (PINN) for shear wave elastography

论文作者

Yin, Ziying, Li, Guo-Yang, Zhang, Zhaoyi, Zheng, Yang, Cao, Yanping

论文摘要

剪切波弹性图(SWE)可以以非侵入性的方式测量软材料(包括软组织)的弹性性能,并在各种学科中找到了广泛的应用。在各种仪器中商业化的最先进的SWE方法依赖于剪切波速度的测量来推断材料参数,并且由于波场的复杂性,对于不均匀的软材料的分辨率和准确性相对较低。在本研究中,我们通过提出一个基于物理学的神经网络(PINN)的SWE(SWENET)方法来克服这一挑战,考虑到PINN在解决逆问题中的优点。不均匀材料的弹性特性的空间变化已在管理方程中定义,这些方程式在PINN中编码为损耗函数。局部区域内的波动运动的快照已用于训练神经网络,在本课程中,同时推断出弹性特性的空间分布。已经进行了有限元模拟和模拟组织的幻影实验以验证该方法。我们的结果表明,可以很好地鉴定出由基质和横截面尺寸的几毫米的夹杂物和夹杂物组成的剪切模量,并且可以很好地鉴定出规则或不规则的几何形状。 SWENET比常规SWE方法的优点包括在不均匀的软材料中使用波动运动的更多特征,并在反向分析中实现多源数据的无缝集成。鉴于该方法的优点,它可能会发现应用程序,包括但不限于人工软生物材料的机械表征,体内神经的成像弹性特性以及通过定量测量其独特的刚度来区分良性肿瘤与良性肿瘤。

Shear wave elastography (SWE) enables the measurement of elastic properties of soft materials, including soft tissues, in a non-invasive manner and finds broad applications in a variety of disciplines. The state-of-the-art SWE methods commercialized in various instruments rely on the measurement of shear wave velocities to infer material parameters and have relatively low resolution and accuracy for inhomogeneous soft materials due to the complexity of wave fields. In the present study, we overcome this challenge by proposing a physics-informed neural network (PINN)-based SWE (SWENet) method considering the merits of PINN in solving an inverse problem. The spatial variation of elastic properties of inhomogeneous materials has been defined in governing equations, which are encoded in PINN as loss functions. Snapshots of wave motion inside a local region have been used to train the neural networks, and during this course, the spatial distribution of elastic properties is inferred simultaneously. Both finite element simulations and tissue-mimicking phantom experiments have been performed to validate the method. Our results show that the shear moduli of soft composites consisting of matrix and inclusions of several millimeters in cross-section dimensions with either regular or irregular geometries can be identified with good accuracy. The advantages of the SWENet over conventional SWE methods consist of using more features of the wave motion in inhomogeneous soft materials and enabling seamless integration of multi-source data in the inverse analysis. Given the advantages of the reported method, it may find applications including but not limited to mechanical characterization of artificial soft biomaterials, imaging elastic properties of nerves in vivo, and differentiating small malignant tumors from benign ones by quantitatively measuring their distinct stiffnesses.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源