论文标题
Cayley树和吊灯网络上晶格模型的相图:评论
Phase diagrams of lattice models on Cayley tree and chandelier network: a review
论文作者
论文摘要
这篇评论论文的主要目的是在相对于Cayley Tree(或Bethe lattice)和吊灯网络上的晶格模型(Ising和Potts)的相位图中系统地提供所有已知结果。报告了对晶格模型的各种建模应用的详细调查。通过使用Vannimenus的方法,介绍和分析了与给定的汉密尔顿相关的Ising和Potts模型的递归方程。绘制了带有不同编程语言的编程代码的相应阶段图。为了检测调制阶段中的相变,我们详细研究了与温度和与当前递归系统轨迹相关的温度和Lyapunov指数的实际变化。我们通过Lyapunov指数,Wave-Vector和奇怪的吸引子来确定相应($ c $)和不一致($ i $)阶段之间的过渡,以进行全面比较。我们调查了枝形吊灯网络上Ising模型的动态行为。我们检查了与给定的哈密顿量对应的ISING模型的相图,上面是一种新型的“ Cayley-Tree样晶格”,例如三角形,矩形,五边形枝形吊灯网络(晶格)。此外,讨论了几个开放问题。
The main purpose of this review paper is to give systematically all the known results on phase diagrams corresponding to lattice models (Ising and Potts) on Cayley tree (or Bethe lattice) and chandelier networks. A detailed survey of various modelling applications of lattice models is reported. By using Vannimenus's approach, the recursive equations of Ising and Potts models associated to a given Hamiltonian on the Cayley tree are presented and analyzed. The corresponding phase diagrams with programming codes in different programming languages are plotted. To detect the phase transitions in the modulated phase, we investigate in detail the actual variation of the wave-vector $q$ with temperature and the Lyapunov exponent associated with the trajectory of our current recursive system. We determine the transition between commensurate ($C$) and incommensurate ($I$) phases by means of the Lyapunov exponents, wave-vector, and strange attractor for a comprehensive comparison. We survey the dynamical behavior of the Ising model on the chandelier network. We examine the phase diagrams of the Ising model corresponding to a given Hamiltonian on a new type of "Cayley-tree-like lattice", such as triangular, rectangular, pentagonal chandelier networks (lattices). Moreover, several open problems are discussed.