论文标题

节省肢体:通过加强学习,易于故障的四足球运动

Saving the Limping: Fault-tolerant Quadruped Locomotion via Reinforcement Learning

论文作者

Liu, Dikai, Zhang, Tianwei, Yin, Jianxiong, See, Simon

论文摘要

在偏远的不受控制的环境中,现代四足动物熟练在不平坦的地形上穿越甚至冲刺。但是,在野外生存不仅需要机动性,而且还需要处理潜在的关键硬件故障的能力。很少研究如何授予这种四倍的能力。在本文中,我们提出了一种新颖的方法,用于在模拟和物理世界中训练和测试硬件耐受耐受性控制器,以进行四倍的运动。我们采用教师实践的增强学习框架来训练控制器在模拟中几乎逼真的联合锁定失败,这可以将其零射击到实体机器人中,而无需进行任何微调。广泛的实验表明,我们的容忍断层控制器可以在运动过程中面临关节失败时有效地稳定地引导四足动物。

Modern quadrupeds are skillful in traversing or even sprinting on uneven terrains in a remote uncontrolled environment. However, survival in the wild requires not only maneuverability, but also the ability to handle potential critical hardware failures. How to grant such ability to quadrupeds is rarely investigated. In this paper, we propose a novel methodology to train and test hardware fault-tolerant controllers for quadruped locomotion, both in the simulation and physical world. We adopt the teacher-student reinforcement learning framework to train the controller with close-to-reality joint-locking failure in the simulation, which can be zero-shot transferred to the physical robot without any fine-tuning. Extensive experiments show that our fault-tolerant controller can efficiently lead a quadruped stably when it faces joint failures during locomotion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源