论文标题
个性化激励措施的大规模分配
Large-Scale Allocation of Personalized Incentives
论文作者
论文摘要
我们考虑一个愿意通过向大量个人提供激励措施来推动个人选择来增加社会福利的监管者。 为此,我们正式化并解决了寻找最佳个性化征收政策的问题:最佳的意义是,它在激励预算约束下最大化社会福利,从某种意义上说,提出的激励措施取决于每个人可用的替代方案,以及她的偏好。 我们提出了一种多项式时间近似算法,该算法在几秒钟内计算策略,并在分析上证明它有限接近最佳。 然后,我们将问题扩展到有效计算最大的社会福利曲线,这为一系列激励预算(不仅仅是一个价值)提供了最大的社会福利。 该曲线是监管机构确定正确的激励预算投资的有价值的实用工具。 最后,我们模拟了法国部门(大约200万个人)中对模式选择的大规模应用,并说明了拟议的个性化征收政策在减少二氧化碳排放方面的有效性。
We consider a regulator willing to drive individual choices towards increasing social welfare by providing incentives to a large population of individuals. For that purpose, we formalize and solve the problem of finding an optimal personalized-incentive policy: optimal in the sense that it maximizes social welfare under an incentive budget constraint, personalized in the sense that the incentives proposed depend on the alternatives available to each individual, as well as her preferences. We propose a polynomial time approximation algorithm that computes a policy within few seconds and we analytically prove that it is boundedly close to the optimum. We then extend the problem to efficiently calculate the Maximum Social Welfare Curve, which gives the maximum social welfare achievable for a range of incentive budgets (not just one value). This curve is a valuable practical tool for the regulator to determine the right incentive budget to invest. Finally, we simulate a large-scale application to mode choice in a French department (about 200 thousands individuals) and illustrate the effectiveness of the proposed personalized-incentive policy in reducing CO2 emissions.