论文标题

引用轨迹通过出版物影响表示使用时间知识图来预测

Citation Trajectory Prediction via Publication Influence Representation Using Temporal Knowledge Graph

论文作者

Zong, Chang, Zhuang, Yueting, Lu, Weiming, Shao, Jian, Tang, Siliang

论文摘要

预测出版物在科学和技术中的影响已成为一个重要的研究领域,该领域在技术投资,研究方向选择和技术决策等各种现实世界中很有用。引用轨迹预测是该领域最受欢迎的任务之一。现有的方法主要依赖于学术文章中的时间和图形数据。最近的一些方法可以通过汇总新出版物的元数据特征来处理冷启动预测。但是,仍然需要探索引用引用和属性功能的更丰富信息的隐含因素。在本文中,我们提出了一个新的引用轨迹预测框架CTPIR,能够使用其所有属性的历史信息信息来代表新出版物或现有出版物的影响(引用动量)。我们的框架由三个模块组成:差异保存的图形嵌入,细粒的影响表示和基于学习的轨迹计算。为了测试我们在更多情况下框架的有效性,我们从现实世界中收集和构建了一个新的时间知识图数据集,该数据集名为AIPATENT,这源于人工智能领域的全球专利。实验均在APS学术数据集和我们的贡献数据集上进行。结果证明了我们在引用轨迹预测任务中的方法的优势。

Predicting the impact of publications in science and technology has become an important research area, which is useful in various real world scenarios such as technology investment, research direction selection, and technology policymaking. Citation trajectory prediction is one of the most popular tasks in this area. Existing approaches mainly rely on mining temporal and graph data from academic articles. Some recent methods are capable of handling cold-start prediction by aggregating metadata features of new publications. However, the implicit factors causing citations and the richer information from handling temporal and attribute features still need to be explored. In this paper, we propose CTPIR, a new citation trajectory prediction framework that is able to represent the influence (the momentum of citation) of either new or existing publications using the history information of all their attributes. Our framework is composed of three modules: difference-preserved graph embedding, fine-grained influence representation, and learning-based trajectory calculation. To test the effectiveness of our framework in more situations, we collect and construct a new temporal knowledge graph dataset from the real world, named AIPatent, which stems from global patents in the field of artificial intelligence. Experiments are conducted on both the APS academic dataset and our contributed AIPatent dataset. The results demonstrate the strengths of our approach in the citation trajectory prediction task.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源