论文标题

基本的二进制卷积单元用于二进制图像恢复网络

Basic Binary Convolution Unit for Binarized Image Restoration Network

论文作者

Xia, Bin, Zhang, Yulun, Wang, Yitong, Tian, Yapeng, Yang, Wenming, Timofte, Radu, Van Gool, Luc

论文摘要

较轻,更快的图像修复(IR)模型对于在资源有限设备上的部署至关重要。二进制神经网络(BNN)是最有前途的模型压缩方法之一,可以大大减少全精度卷积神经网络(CNN)的计算和参数。但是,BNN和Full Eccision CNN之间存在不同的属性,我们几乎无法使用设计CNN的经验来开发BNN。在这项研究中,我们重新考虑了IR任务的二元卷积中的组件,例如残留连接,批处理,激活函数和结构。我们进行系统分析,以解释每个组件在二元卷积中的作用并讨论陷阱。具体而言,我们发现剩余连接可以减少由二进制化造成的信息损失。 BatchNorm可以解决残留连接和二元卷积之间的值范围差距;激活函数的位置极大地影响了BNN的性能。根据我们的发现和分析,我们设计了一个简单而有效的基本二元卷积单元(BBCU)。此外,我们将红外网络分为四个部分,并为每个部分设计了BBCU的特殊设计变体,以探索将这些部分进行分配的好处。我们对不同的IR任务进行了实验,我们的BBCU明显优于其他BNN和轻量级模型,这表明BBCU可以作为二进制IR网络的基本单位。所有代码和模型都将发布。

Lighter and faster image restoration (IR) models are crucial for the deployment on resource-limited devices. Binary neural network (BNN), one of the most promising model compression methods, can dramatically reduce the computations and parameters of full-precision convolutional neural networks (CNN). However, there are different properties between BNN and full-precision CNN, and we can hardly use the experience of designing CNN to develop BNN. In this study, we reconsider components in binary convolution, such as residual connection, BatchNorm, activation function, and structure, for IR tasks. We conduct systematic analyses to explain each component's role in binary convolution and discuss the pitfalls. Specifically, we find that residual connection can reduce the information loss caused by binarization; BatchNorm can solve the value range gap between residual connection and binary convolution; The position of the activation function dramatically affects the performance of BNN. Based on our findings and analyses, we design a simple yet efficient basic binary convolution unit (BBCU). Furthermore, we divide IR networks into four parts and specially design variants of BBCU for each part to explore the benefit of binarizing these parts. We conduct experiments on different IR tasks, and our BBCU significantly outperforms other BNNs and lightweight models, which shows that BBCU can serve as a basic unit for binarized IR networks. All codes and models will be released.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源