论文标题
广义量子旋转指南针链的旋转动力学
Spin dynamics of the generalized quantum spin compass chain
论文作者
论文摘要
我们使用密度矩阵重新归一化组计算了广义自旋的动力自旋结构因子 - 指南针旋转链。该模型也称为扭曲的Kitaev旋转链,最近被认为与自旋链复合夹$ _2 $ o $ $ _6 $的描述有关。它具有键依赖性的相互作用和插入式链链和基塔夫蜂窝旋转模型的一维变体之间的插值。依次发现,结构因子在伊斯林的限制中插入了裂开的限制,而在基塔伊夫限制中以非平凡连续性为单位。特别是,由于广泛的地面堕落性的出现,垂直于伊辛方向的结构因子的成分突然变成了无分散连续体。我们表明,该连续体与分析的Jordan-Wigner结果一致。我们还讨论了对未来非弹性散射实验和对材料的应用的影响,尤其是conb $ _2 $ o $ $ _6 $。
We calculate the dynamical spin structure factor of the generalized spin-$1/2$ compass spin chain using the density matrix renormalization group. The model, also known as the twisted Kitaev spin chain, was recently proposed to be relevant for the description of the spin chain compound CoNb$_2$O$_6$. It features bond-dependent interactions and interpolates between an Ising chain and a one-dimensional variant of Kitaev's honeycomb spin model. The structure factor, in turn, is found to interpolate from gapped and non-dispersive in the Ising limit to gapless with non-trivial continua in the Kitaev limit. In particular, the component of the structure factor perpendicular to the Ising directions changes abruptly at the Kitaev point into a dispersionless continuum due to the emergence of an extensive groundstate degeneracy. We show this continuum is consistent with analytical Jordan-Wigner results. We also discuss implications for future inelastic scattering experiments and applications to materials, particularly CoNb$_2$O$_6$.