论文标题

部分可观测时空混沌系统的无模型预测

Summing free unitary Brownian motions with applications to quantum information

论文作者

Demni, Nizar, Hamdi, Tarek

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Motivated by quantum information theory, we introduce a dynamical random state built out of the sum of $k \geq 2$ independent unitary Brownian motions. In the large size limit, its spectral distribution equals, up to a normalising factor, that of the free Jacobi process associated with a single self-adjoint projection with trace $1/k$. Using free stochastic calculus, we extend this equality to the radial part of the free average of $k$ free unitary Brownian motions and to the free Jacobi process associated with two self-adjoint projections with trace $1/k$, provided the initial distributions coincide. In the single projection case, we derive a binomial-type expansion of the moments of the free Jacobi process which extends to any $k \geq 3$ the one derived in \cite {DHH} in the special case $k=2$. Doing so give rise to a non normal (except for $k=2$) operator arising from the splitting of a self-adjoint projection into the convex sum of $k$ unitary operators. This binomial expansion is then used to derive a pde for the moment generating function of this non normal operator and for which we determine the corresponding characteristic curves.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源