论文标题

机器人辅助灾难响应中语义信息的分类学

A Taxonomy of Semantic Information in Robot-Assisted Disaster Response

论文作者

Ruan, Tianshu, Wang, Hao, Stolkin, Rustam, Chiou, Manolis

论文摘要

本文提出了在机器人辅助灾难响应中的语义信息分类法。机器人越来越多地用于危险环境行业和紧急响应小组中,以执行各种任务。此类应用中的运营决策需要对远离人类操作员的环境有复杂的语义理解。来自机器人的低级感觉数据被转变为感知和信息认知。当前,这种认知主要由人类专家进行,后者监视远程传感器数据,例如机器人视频提要。这导致需要在机器人本身上建立AI生成的语义理解能力。目前关于语义和AI的工作朝着研究范围的相对学术端,因此从第一响应者团队的实际现实中删除了相对的研究。我们旨在使本文迈向弥合这种鸿沟的一步。我们首先在灾难响应中审查常见的机器人任务,以及此类机器人必须收集的信息类型。然后,我们组织了语义特征和识别的类型,这些特征可能在灾难操作中有用,以作为语义信息的分类法。我们还简要回顾了当前的最新语义理解技术。我们重点介绍潜在的协同作用,但我们还确定了需要桥接以应用这些想法的差距。我们旨在刺激在灾难和第一响应者场景的挑战性条件下适应,鲁棒和实施最先进的AI语义方法所需的研究。

This paper proposes a taxonomy of semantic information in robot-assisted disaster response. Robots are increasingly being used in hazardous environment industries and emergency response teams to perform various tasks. Operational decision-making in such applications requires a complex semantic understanding of environments that are remote from the human operator. Low-level sensory data from the robot is transformed into perception and informative cognition. Currently, such cognition is predominantly performed by a human expert, who monitors remote sensor data such as robot video feeds. This engenders a need for AI-generated semantic understanding capabilities on the robot itself. Current work on semantics and AI lies towards the relatively academic end of the research spectrum, hence relatively removed from the practical realities of first responder teams. We aim for this paper to be a step towards bridging this divide. We first review common robot tasks in disaster response and the types of information such robots must collect. We then organize the types of semantic features and understanding that may be useful in disaster operations into a taxonomy of semantic information. We also briefly review the current state-of-the-art semantic understanding techniques. We highlight potential synergies, but we also identify gaps that need to be bridged to apply these ideas. We aim to stimulate the research that is needed to adapt, robustify, and implement state-of-the-art AI semantics methods in the challenging conditions of disasters and first responder scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源