论文标题
动态关系数据的分解融合收缩
Factorized Fusion Shrinkage for Dynamic Relational Data
论文作者
论文摘要
现代数据科学应用通常涉及具有动态结构的复杂关系数据。在经历干预措施引起的制度变化的系统中,通常观察到这种动态关系数据的突然变化。在这种情况下,我们考虑了一个分解的融合收缩模型,在该模型中,所有分解的因子都在动态地缩小了群体融合结构,其中通过将全球 - 本地收缩率应用于分解矩阵的行矢量的连续差异来获得收缩。在估计的动态潜在因素的比较和聚类中,提出的先验享有许多有利的特性。比较估计的潜在因素涉及相邻和长期比较,而比较的时间范围则为变量。在某些条件下,我们证明后验分布达到了对数因素的最小最佳速率。在计算方面,我们提出了一个结构化的均值变化推理框架,该框架可以平衡最佳的后验与计算可伸缩性,从而利用组件之间以及跨时间的依赖性。该框架可以容纳多种模型,包括动态矩阵分解,网络和低级数张量的潜在空间模型。通过广泛的模拟和现实世界数据分析证明了我们方法论的有效性。
Modern data science applications often involve complex relational data with dynamic structures. An abrupt change in such dynamic relational data is typically observed in systems that undergo regime changes due to interventions. In such a case, we consider a factorized fusion shrinkage model in which all decomposed factors are dynamically shrunk towards group-wise fusion structures, where the shrinkage is obtained by applying global-local shrinkage priors to the successive differences of the row vectors of the factorized matrices. The proposed priors enjoy many favorable properties in comparison and clustering of the estimated dynamic latent factors. Comparing estimated latent factors involves both adjacent and long-term comparisons, with the time range of comparison considered as a variable. Under certain conditions, we demonstrate that the posterior distribution attains the minimax optimal rate up to logarithmic factors. In terms of computation, we present a structured mean-field variational inference framework that balances optimal posterior inference with computational scalability, exploiting both the dependence among components and across time. The framework can accommodate a wide variety of models, including dynamic matrix factorization, latent space models for networks and low-rank tensors. The effectiveness of our methodology is demonstrated through extensive simulations and real-world data analysis.