论文标题
时间变化的无限二维线性港口港口系统的可溶性
Solvability of time-varying infinite-dimensional linear port-Hamiltonian systems
论文作者
论文摘要
引入哈米尔顿港系统的30年后,对该系统类别的兴趣在系统和控制研究人员中仍然很高。最近,雅各布和拉斯里(Jacob)和拉斯里(Laasri)在具有边界控制和边界观察的时变线性端口 - hamil \ to \ nian系统方面取得了良好的结果。在本文中,我们通过讨论线性,无限二二维港口 - 哈米尔顿港系统的可溶性不一定是边界控制类型的可溶性来补充他们的结果。该理论在状态动力学中具有延迟组件的系统上进行了说明。
Thirty years after the introduction of port-Hamiltonian systems, interest in this system class still remains high among systems and control researchers. Very recently, Jacob and Laasri obtained strong results on the solvability and well-posedness of time-varying linear port-Hamil\-to\-nian systems with boundary control and boundary observation. In this paper, we complement their results by discussing the solvability of linear, infinite-dimensional time-varying port-Hamiltonian systems not necessarily of boundary control type. The theory is illustrated on a system with a delay component in the state dynamics.