论文标题
恒定功能做市商的公理
Axioms for Constant Function Market Makers
论文作者
论文摘要
我们研究了不同类别的恒定功能自动化做市商(CFMM)的公理基础。我们特别关注可分离性和在缩放下的不同不变特性。我们的主要结果是对恒定产品做市商(CPMM)的自然概括(一方面流行的融资中流行)的自然概括,另一方面是对数得分规则做市商(LMSR)的表征,另一方面在预测市场中流行。一流的特征是独立性和规模不变性的结合,而第二类的特征是独立性和翻译不变性的结合。因此,这两个类的区别是不同的不变属性,这些属性是由两个应用程序中的Numéraire的不同解释所激发的。 但是,两者都被相同的可分离性属性固定。 此外,我们将CPMM表征为规模不变,独立的,对称的AMM的极端点,并提供了非集中流动性提供。我们的结果增加了对当前用于分散交流的机制的正式分析,并将最受欢迎的Defi Amms类连接到最受欢迎的预测市场AMM。
We study axiomatic foundations for different classes of constant-function automated market makers (CFMMs). We focus particularly on separability and on different invariance properties under scaling. Our main results are an axiomatic characterization of a natural generalization of constant product market makers (CPMMs), popular in decentralized finance, on the one hand, and a characterization of the Logarithmic Scoring Rule Market Makers (LMSR), popular in prediction markets, on the other hand. The first class is characterized by the combination of independence and scale invariance, whereas the second is characterized by the combination of independence and translation invariance. The two classes are therefore distinguished by a different invariance property that is motivated by different interpretations of the numéraire in the two applications. However, both are pinned down by the same separability property. Moreover, we characterize the CPMM as an extremal point within the class of scale invariant, independent, symmetric AMMs with non-concentrated liquidity provision. Our results add to a formal analysis of mechanisms that are currently used for decentralized exchanges and connect the most popular class of DeFi AMMs to the most popular class of prediction market AMMs.