论文标题

通过时间到期的线图直接嵌入时间网络边缘

Direct Embedding of Temporal Network Edges via Time-Decayed Line Graphs

论文作者

Chanpuriya, Sudhanshu, Rossi, Ryan A., Kim, Sungchul, Yu, Tong, Hoffswell, Jane, Lipka, Nedim, Guo, Shunan, Musco, Cameron

论文摘要

时间网络模拟各种重要现象,涉及实体之间的定时相互作用。在时间网络上的机器学习方法通​​常至少显示出两个限制之一。首先,假定时间被离散化,因此,如果时间数据连续,则用户必须确定离散化并丢弃精确的时间信息。其次,边缘表示只能从节点间接计算,这对于诸如边缘分类之类的任务可能是次优的。我们提出了一种避免两个缺点的简单方法:构建网络的界限图,其中包含每个交互的节点,并根据交互之间的时间差来权衡此图的边缘。从这个派生的图表中,可以使用有效的经典方法来计算原始网络的边缘表示。这种方法的简单性促进了明确的理论分析:我们可以建设性地展示方法表示对时间网络的自然合成模型的有效性。现实世界网络上的经验结果证明了我们方法对边缘分类和时间链接预测的效率和效率。

Temporal networks model a variety of important phenomena involving timed interactions between entities. Existing methods for machine learning on temporal networks generally exhibit at least one of two limitations. First, time is assumed to be discretized, so if the time data is continuous, the user must determine the discretization and discard precise time information. Second, edge representations can only be calculated indirectly from the nodes, which may be suboptimal for tasks like edge classification. We present a simple method that avoids both shortcomings: construct the line graph of the network, which includes a node for each interaction, and weigh the edges of this graph based on the difference in time between interactions. From this derived graph, edge representations for the original network can be computed with efficient classical methods. The simplicity of this approach facilitates explicit theoretical analysis: we can constructively show the effectiveness of our method's representations for a natural synthetic model of temporal networks. Empirical results on real-world networks demonstrate our method's efficacy and efficiency on both edge classification and temporal link prediction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源