论文标题
评估物理受限的数据驱动方法的湍流模型不确定性定量
Evaluation of physics constrained data-driven methods for turbulence model uncertainty quantification
论文作者
论文摘要
为了实现涡轮机械的虚拟认证过程和强大的设计,必须知道计算流体动力学的不确定性范围。湍流闭合模型的配方意味着雷诺平均纳维尔 - 史托克斯模拟的总体不确定性的主要来源。我们讨论了应用物理限制的雷诺强调张力张量的特征局部扰动的常见实践,以说明湍流模型的模型不确定性。由于基本方法通常会导致过度慷慨的不确定性估计,因此我们扩展了添加机器学习策略的最新方法。数据驱动方法的应用是通过努力检测流动区域来激发的,流动区域容易遭受缺乏湍流模型预测准确性的困扰。这样,与选择不确定性程度有关的任何用户输入都应该过时。这项工作特别研究了一种方法,该方法试图确定预测置信度的先验估计,而没有可用的数据可以判断预测。 NACA 4412机翼在近台条件下的流动证明了数据驱动的特征空间扰动框架的成功应用。此外,我们特别强调了基本方法的目标和局限性。
In order to achieve a virtual certification process and robust designs for turbomachinery, the uncertainty bounds for Computational Fluid Dynamics have to be known. The formulation of turbulence closure models implies a major source of the overall uncertainty of Reynolds-averaged Navier-Stokes simulations. We discuss the common practice of applying a physics constrained eigenspace perturbation of the Reynolds stress tensor in order to account for the model form uncertainty of turbulence models. Since the basic methodology often leads to overly generous uncertainty estimates, we extend a recent approach of adding a machine learning strategy. The application of a data-driven method is motivated by striving for the detection of flow regions, which are prone to suffer from a lack of turbulence model prediction accuracy. In this way any user input related to choosing the degree of uncertainty is supposed to become obsolete. This work especially investigates an approach, which tries to determine an a priori estimation of prediction confidence, when there is no accurate data available to judge the prediction. The flow around the NACA 4412 airfoil at near-stall conditions demonstrates the successful application of the data-driven eigenspace perturbation framework. Furthermore, we especially highlight the objectives and limitations of the underlying methodology.