论文标题
朝向多个临时尺度的广义PDE建模
Towards Multi-spatiotemporal-scale Generalized PDE Modeling
论文作者
论文摘要
部分微分方程(PDE)对于描述复杂的物理系统模拟至关重要。他们昂贵的解决方案技术导致人们对基于深神网络的替代物的兴趣增加。但是,训练这种替代物的实际实用性取决于它们对复杂多尺度时空现象进行建模的能力。已经提出了各种神经网络体系结构来针对此类现象,最著名的是傅立叶神经操作员(FNO),它们通过不同的傅立叶模式的参数化来对局部和全球空间信息进行自然处理,以及通过下采样和降压路径来处理本地和全球信息的U-NET。但是,在不同方程参数或时间尺度上概括仍然是一个挑战。在这项工作中,我们将各种FNO,Resnet和U-NET类似于涡度流和速度功能形式的流体力学问题的方法进行了全面比较。对于U-NET,我们将最近的体系结构改进从计算机视觉转移,尤其是从对象细分和生成建模中转移。我们进一步分析了使用FNO层来提高U-NET体系结构的性能而没有重大计算成本的设计注意事项。最后,我们通过单个替代模型显示了对不同PDE参数和时间量表的概括的有希望的结果。我们的Pytorch基准框架的源代码可在https://github.com/microsoft/pdearena上找到。
Partial differential equations (PDEs) are central to describing complex physical system simulations. Their expensive solution techniques have led to an increased interest in deep neural network based surrogates. However, the practical utility of training such surrogates is contingent on their ability to model complex multi-scale spatio-temporal phenomena. Various neural network architectures have been proposed to target such phenomena, most notably Fourier Neural Operators (FNOs), which give a natural handle over local & global spatial information via parameterization of different Fourier modes, and U-Nets which treat local and global information via downsampling and upsampling paths. However, generalizing across different equation parameters or time-scales still remains a challenge. In this work, we make a comprehensive comparison between various FNO, ResNet, and U-Net like approaches to fluid mechanics problems in both vorticity-stream and velocity function form. For U-Nets, we transfer recent architectural improvements from computer vision, most notably from object segmentation and generative modeling. We further analyze the design considerations for using FNO layers to improve performance of U-Net architectures without major degradation of computational cost. Finally, we show promising results on generalization to different PDE parameters and time-scales with a single surrogate model. Source code for our PyTorch benchmark framework is available at https://github.com/microsoft/pdearena.